Course Notes

Gidon Rosalki

Contents

I Game sheet

1 Perfect secrecy

2 Indistinguishable encryption

3 PRGs

4 Semantic security

5 One way functions

6 Computational Indistinguishability
7 Hybrid argument

8 Chosen Plaintext Attack (CPA)
9 Pseudorandom Functions

10 MACs

11 CRHF

12 CCA

13 Key Agreement
13.1 Diffie-Hellman o e e e e

14 Public Key Encryption

15 Digital Signatures

16 Interactive Proofs

17 Zero Knowledge Proofs

18 Commitments

19 ZKP for G3C with Commitments

20 Cryptography Primitives

II Lecture 1 — 2025-10-22

21 Course overview

10

10

11

22 Symmetric key encryption

22.1 COTTECEIESS .« © v v v v o e e e e e e e e e e e e
22.2 Caesar Cipher e
22.3 Substitution cipher L
22.4 Vigeneére cipher L e

23 Historical ciphers
24 Basic principles of modern cryptography
25 Perfect secrecy

26 One time pad

26.1 Limitations of the one time pad L
26.2 Characterising perfect secrecy L e

27 Tutorial

IITI Lecture 2 - Private key encryption — 2025-10-29

28 Reminder

29 Computational security

29.1 Approaches L
29.1.1 Concrete approach e
29.1.2 Asymptotic approach e

30 Indistinguishable encryptions

31 Pseudo-random generator

32 PRG-based OTP

33 Indistinguishable encryptions revisited

33.1 Semantic security
33.2 Omne way functions L e

IV Lecture 3 - Private key encryption II — 2025-11-05

34 Recap

35 Computational Indistinguishability
36 Security against a CPA

37 Pseudorandom functions

38 CPA secure encryptions from PRFs

39 Practical heuristics block ciphers

V Tutorial 2 — 2025-11-05
40 Recap
41 Pseudorandom Generators (PRGs)

42 Indistinguishable proofs

VI Lecture 4 — 2025-11-19

43 Introduction

II

12
13
13
13
13

13
14
14

15
15
16

16

17
17

17
17
17
17

18

18
19

19

20
21
21

22
22
22
22
23
23

25

28
28
28

29

32

32

44 Message authentication
44.1 Message Authentication Code (MAC) . . .
44.2 Fixed length MAC
44.3 Arbitrary length messages
44.3.1 Attempt 1.
44.3.2 Attempt 2.
44.3.3 Attempt 3. oL
44.3.4 Solution 1
44.3.5 Solution 2 (CBC-MAC)
44.3.6 Solution 3 - Hash and Authenticate

45 Collision-Resistant Hash Functions
46 Authenticating Arbitrary-Length Messages

47 Returning to encryption
47.1 Chosen Ciphertext Attack CCA
47.1.1 CCA-Secure encryption scheme . . .

48 Crypto primitives so far

VII Tutorial 3 — 2025-11-19

49 Reminder

VIII Tutorial 4 — 2025-12-03

50 Question 1
50.1 Solution
50.2 Solution IT.

51 Question 2
51.1 Solution
51.2 Extension

IX Lecture 5 - Number Theory and Hardness Assumptions — 2025-12-10

52 Number theory
521 GCDo
52.2 Modular arithmetic
52.3 GIoups. . . « v v v v e
52.3.1 Examples
52.3.2 Group exponentiation
5233 Zstar N
52.4 Hard problems

53 Factoring and RSA assumptions
53.1 Factoring assumption.
53.2 RSA assumption
53.2.1 Chinese Remainder Theorem
53.3 Cyclicgroups

54 Discrete logarithm assumption
54.0.1 Crypto primitives.
54.0.2 Commonly used groups
54.0.3 Problem difficulty

X Lecture 6 - Public Key Cryptography — 2025-12-17

III

32
32
32
33
33
33
33
33
34
34

34
35

36
37
37

39

40

40

42

42
42
42

42
43
43

44

44
44
44
45
45
46
46
47

47
47
47
48
48

49
49
49
50

51

55 Private key cryptography

55.1 Diffie - Hellman o0 L o
55.1.1 Key-Agreement protocols
55.1.2 Diffie-Hellman Key Agreement

XI Lecture 7 - Public key encryption — 2025-12-17

56 Public key encryption
56.1 Definitions
56.2 Encrypting long messages

57 Hybrid encryption

58 Constructions
58.1 El-Gamal Encryption.
58.2 RSA encryption
58.2.1 The RSA assumption
58.2.2 Textbook RSA encryption
58.2.3 PKCS

XII Lecture 8 — 2025-12-31

59 Digital signatures
59.1 Security of Signatures

60 Constructions
60.1 One time signatures
60.1.1 Summary
60.2 Stateful signatures
60.3 Stateless signatures

61 Certificates and public key infrastructure

62 User-server identification

XIII Exam 2025A — 2026-01-07

63 Question 1
63.1 Part A
632 Part B

64 Question 2
64.1 Part A
642 Part B oo

65 Question 3
65.1 Part A
65.2 Part B,

XIV Lecture 9 — 2026-01-14
66 Introduction

67 Interactive proofs

68 Zero knowledge proofs

69 Zero knowledge proofs for NP
69.1 Tool: Commitment schemes
69.1.1 Some applications of commitments

v

51
o1
o1
52

54

54
54
54

55

55
99
56
56
56
o7

59

59
99

60
60
61
61
62

62

62

63

63
63
63

63
64
64

64
64
64

65

65

65

66

Part 1
Game sheet

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

1 Perfect secrecy

Definition 1.1 (Perfect secrecy). A symmetric key encryption scheme II = (KeyGen, Enc, Dec) is perfectly secret
if for every distribution over M, and for every m € M, and for every c € C it holds that

Pr[M =m|C =c] = Pr[M =m]

That is, the probability that some plaintext is the plaintext given the ciphertext, is the same as the probability
that some plaintext is the plaintext, with no priors whatsoever.

2 Indistinguishable encryption

Definition 2.1 (Indistinguishable encryption). II has indistinguishable encryptions if for every PPT adversary
A there exists a negligible function v (-) such that

P[IND 4 (n)=1] < % +v(n)

where the probability is taken over the random coins used by A, and by the experiment.

k < KeyGen (1™)
mo, M1 \
4
b+ {0,1}
A (1”) c* + Ency, (myp)
yi c*
A
v .
4
1, iy =b

0, otherwise

INDyp 4 (n) = {

3 PRGs

Definition 3.1 (PRG). Let G : {0,1}" — {O,l}l(") be a polynomial-time computable function, and let 1(-) be a
polynomial such that for any input s € {0,1}", we have G (s) € {0, 1}l(n). Then, G is a pseudorandom generator
if the following two conditions hold:

o Ezpansion: 1 (n) >n
o Pseudorandomness: For every PPT “distinguisher” D, there exists a negligible function v (-) such that

D (G (s) = 1] -

Pr Pr D(r)=1]| <v(n
s+{0,1}" r«{0,1}}(" (r) Jfsvln)

So, the probability that the distinguisher may tell the difference between the output of the PRG, and truly random
noise, is less than the output of the negligible function for that length of input.

https://github.com/robomarvin1501/notes_intro_to_crypto

4 Semantic security

Definition 4.1 (Semantically secure). II is semantically secure if for every adversary A there exists a PPT
“simulator” S such that for every efficiently sampleable plaintext distribution M = {My,}, ., and all polynomial-time
computable functions f and h, there exists a negligible function v () such that

[Pr[A (1", Ency (m), h(m)) = f (m)] = Pr[S (1", h(m)) = f (m)]| <v(n)
where k < KeyGen (1) and m < M,

Or in other words, whatever you can learn from the encryption, can also be efficiently learnt without the encryption,
or most simply, the ciphertext teaches us nothing. II is semantically secure if and only if it has indistinguishable
encryption.

5 One way functions

Definition 5.1. A polynomial-time computable function f : {0,1}" — {0,1}" is one way if for any PPT A, and
negligible function v (+)
Pr [A(l"y) €/ (y)] v ()

y<f(Un)

Easy to compute, hard to invert.

6 Computational Indistinguishability

Definition 6.1 (Computationally indistinguishable). Two probability distributions X = {X,}, cy and Y = {Y,},
are computationally indistinguishable if for every PPT distinguisher D there exists a negligible function v () such
that

Pr [D(1™z)=1]—- Pr [D(1"y) =1]| <v(n)

X y<Yn

This is denoted X ~¢Y

7 Hybrid argument

This is a complicated technique, so we shall present an example.

Theorem 1. Let G : {0,1}" — {0,1}*" be a PRG, then H (s1,s5) = G (s1) ||G (s2) is a PRG.

Proof . Our paradigm for this kind of proof is reduction via a hybrid argument.
Reduction: Given a distinguisher D, for H, construct a distinguisher A for G.
Hybrid argument: Let us suppose that between G (s1),G (s2) D has advantage €. Let us create a new PRG, that
given sy, so, ignores sqo, and returns G (s1),r2. So, between G (s1),G (s2) and G (s1), 72, it holds that D has at least

the advantage %, or between G (s1),72 and r1,79 it holds that D has the advantage of at least %

(. G(s1) G (s2)

D must have
an advan-
tage of 5 here

Suppose that
D has an ad- G (s1) T
vantage of €

Or here

1 T2

So:

e <|P[D (G (s1) (|G (s2)) = 1] = P[D (r1][r2) = 1]]
< PID (G (1) [|G (s2)) = 1 =P[D (G (s1) [|r2) = 1| + [P[D (G (s1) [|r2) = 1] = P[D (r1|r) = 1]]

Let us define A, which on input z € {0,1}*" with sample s; < {0,1}" and output D (G (s1) ||z). In this case, we
have created an adversary that distinguishes between the first 2 cases based off the difference of G (s3) and ro. We
may similarly create a second adversary that performs the same, and outputs D (Z]|r3). Since one of these transitions
must be distinguishable with an advantage of at least 5, we have found an adversary A for G, which is a contradiction
to the given that G is a PRG. O

8 Chosen Plaintext Attack (CPA)

We can modify Indistinguishable Encryption such that .4 may request any number of encryptions (From an oracle),
before it hands over the two messages between which it must distinguish:

Definition 8.1 (IND-CPA). II has indistinguishable encryptions under a chosen-plaintext attack if for every PPT
adversary A there exists a negligible function v (-) such that

1
Pr [INDgff (n)=1| < B +v(n)

This is to say, that the probability of winning the CPA game (described below) is 50%, plus negligible.

k <+ KeyGen(1™)

m

(Encg(m)
mo, M1
” b+ {0,1}
A <1n> 3 c* c* < Ency(my)

m

(Ency(m)
b/
1, ifd'=0b

INDSPY (n) =
A (1) 0, otherwise

9 Pseudorandom Functions

Definition 9.1 (PRF). An efficiently computable keyed function
F:{0,1}" x {0,1}" — {0,1}'"

is pseudorandom if for every PPT distinguisher D there exists a negligible function v () such that

Pr [DFW (1") = 1} _Pr {Dh(') (1") = 1” <v(n)

where k < {0,1}" and h < Func,_,,
The methodology for using PRFs is as follows:
1. Prove security assuming a truly random function is used

2. Prove that if an adversary can break the scheme when PRF is used, then it can be used to distinguish the PRF
from a truly random function

We may consider Enc to be, for example something that returns (r, O (r) @ my), and thus try and show if this is
a CPA secure scheme or not. For example, for the theorem If F' is a PRF, then Ilg is CPA-Secure. For the truly
random function h, I} is secure, so we may show that II; is indistinguishable from I, by contradiction that finds
that Il is not a PRF.

DO k <+ KeyGen(1™)

m
(Encg(m)
mo, M1
b+ {0,1}
AQY) e e | e
m

1, it =b

INDGFR (n) =
H’A() 0, otherwise

10 MACs

Definition 10.1 (MAC scheme). A MAC (Message Authentication Code) scheme Il = (Gen, Mac, Vrfy) is secure if
for every PPT adversary A, there exists a negligible function v (-) such that

Pr[MacForgemn 4 (n) =1] < v (n)

This is to say, it is very hard for a PPT adversary to create a new message, with a correct MAC.

k < KeyGen(1™)
m
(Macy, (m)
(m*,t*)
Let Q = the set of all queries asked by A (3)

1, if Vrfy, (m*,t*) =1Am* ¢ Q

MacForgeH_’A (n) = {0 otherwise

Note that this does not prevent replay attacks!

11 CRHF

Definition 11.1 (Collision Resistant). ® is collision resistant if for every PPT adversary A there exists a negligible
function v () such that
Pr[HashCollg 4 (n) =1] <wv(n)

We may describe HashColl as follows:

s < Gen (1™)

A

1, ifHs(zx)=Hs@@)Nz#a2

HashColls 4 (n) = {0 otherwise

12 CCA

Definition 12.1 (CCA-IND). II has indistinguishable encryptions under a chosen-ciphertext attack if for every PPT
adversary A there exists a negligible function v (-) such that

Pr[INDfS* (n) =1] <

In this case, we may also say that II is CCA-secure.

+v(n)

Note that CCA implies authenticity, since given Ency, (m), it is hard to generate Ency (m’) for a “related” m’ (such

asm' =m+1).

(Encg(m)
(Decy, (¢)

k + KeyGen(1™)

AEnck(-),Deck(-) Mo, M1

- b+« {0,1}

c* < Encg(my)

(Enci(m
(Decg(c)

b/

Q = set of all decryption queries asked by A

INDGS (n) = {

13 Key Agreement

1, ifd/=bAc*¢Q
0, otherwise

Definition 13.1 (Correctness). II is a key agreement protocol if there exists a negligible function v (n) such that

foralln e N

This is to say, that K; generates a different key given the same inputs with an exceedingly low probability.

Pr [Ka(1",ra,m8) # Kg (1", ra,r5)] <v(n)

TATB

The important thing to note here is that Eve is eavesdropping the communication channel, and should not learn
any information on the resulting key. Specifically, from Eve’s point of view, the key should be “as good as” an
independently chosen key.

Definition 13.2 (Security). A key agreement protocol I is secure if

(Transcripty (1", 74,78) , Ka (1", 74,78)) =¢ (Transcripty (1", r4,7rB) , K)

Where ra,rp + {0,1}", K < K,, are sampled independently and uniformly.

In order to create such a protocol, it is important to first remember the definition of computational indistin-
guishability. Two probability distributions are computationally indistinguishable if no efficient algorithm can tell them
apart:

Definition 13.3 (Computationally indistinguishable). Two probability ensembles X = { Xy}, cn,Y = {Yn},cn are
computationally indistinguishable if for all PPT distinguishers D there exists a negligible function v (-) such that

[Pr[D(1"2)=1]—-Pr[D(1",y) —1]| <v(n)

Where z < X,,, y+ Y,

13.1 Diffie-Hellman

Let G be a PPT algorithm that on input 1", outputs (G, ¢, g), where G is a cyclic group of order ¢, that is generated
by g, and ¢ is an n bit prime. Let us assume that (G,q,g) + G (1™) is generated, and known to both parties (a
publicly published one in the world).

Alice Bob
ha=g*
Sample: z < Z, > Sample: y + Z,
Output: hy = ¢° |« he = g% Output: hg = ¢¥
Shared key: K4 = (hg)" = g™ Shared key: Kp = (ha)? = g™

Ka=(hp)" =(9")" = (¢")" = (ha)’ = K5

So, Alice samples x < Z4, and then computes hy = g%, which she sends to Bob. Similarly, Bob samples y < Z,,
computes hp = ¢g¥, which he sends to Alice. Alice then outputs K4 = (hp)”, and Bob outputs Kg = (ha)”.

Definition 13.4 (The Decisional Diffie Hellman (DDH) Assumption). For every PPT algorithm A there exists a
negligible function v (-) such that

Pr[A(G,q,9.9%,9%,9") =1] = Pr[A(G,q,9,9%,9%,97) = 1]| <v(n)
Where (G, q,g9) < G (1"), and x,y, z < Z,

Effectively, they made an assumption that it is secure, and it has still not been broken. If you break it, you will
get the Turing prize. Sadly, unlike Computability and Complexity, no guarantees of 100% in the course.

Definition 13.5 (Computational Diffie-Hellman Assumption). For every PPT algorithm A, there exists a negligible
function v () such that
Pr[A(G.q,9,9%,9") = g™]| < v (n)

Where (G, q,g9) < G(1"), and z,y + Z,

If you can solve CDH, then you can also solve DDH, so therefore DDH is a more secure assumption.

14 Public Key Encryption

Definition 14.1 (IND-CPA). II has indistinguishable encryptions under a chosen-plaintext attack if for every PPT
adversary A there exists a negligible function v (-) such that

Pr[INDEDA (n) =1] < = + v (n)

) pk (sk, pk) + KeyGen (1™)
A)
mo, M1 .
r
b+ {0,1}
A ¢* « Ency (myp)
yi C*
A)
v \
r
1, ifb'=»b

INDGT (n) =
ma () 0, otherwise

We will note that this is CPA, despite not having the oracle access, because A4 may function as its own oracle, since
access to the public key means that 4 may encrypt any message that it wants.

15 Digital Signatures

Definition 15.1. II is existentially unforgeable against an adaptive chosen message attack if for every PPT
adversary A, there exists a negligible function v (-) such that

Pr [SigForger 4 (n) = 1] <wv(n)

Where the SigForge game is:

(sk,vk) < Gen(1™)
vk
) m
ASlgDSk (.)
Signsk (m)
(m*,t*)
Let Q = the set of all queries asked by A (8)

1, if Vrfy,, (m*,0") =1Am* ¢ Q

SigForge n)=
grorg H,A() {0, otherwise

16 Interactive Proofs

Definition 16.1 (Interactive proof system). An interactive proof system for a language L is a protocol (P,V)
where V is computable in probabilistic polynomial time, and the following holds:

e Completeness: For every x € L:
Pr [outy [(P,V) (z)] = Accept] =1

TP,TYV

o Soundness: For every x ¢ L, and for every computationally unbounded P*:

Pr [outy [(P*,V) (z)] = Accept] <

TP,Tvy

N =

We will state that IP is the class of all languages with an interactive proof system. IP contains NP, and in fact,
IP = PSPACE. We can reduce the soundness error from % to € with log (%) independent repetitions.
Behold, an example of an interactive proof:

Definition 16.2 (Isomorphic). Two graphs Go = (Vo, Ep), and G1 = (V4, E1) are isomorphic if there exists a one
to one mapping 7 : Vo — V1 such that (u,v) € Ey & (7 (u),m (v)) € Ey for every e,v € Vp

We can define the set of isomorphic graphs GI = {(Gy, G1) : Gy is isomorphic to G1} € NP. Similarly, we can
define the other class of graphs that are not isomorphic: GNI = {(Gg, G1) : Go is not isomorphic to G1} € NP.
This class is not known to be in NP.

Common input (Go, G1)

Prover Verifier
H=m(Gy) Sargple a random permu-
Find z € {0,1} such that | tation 7 and b < {0,1}.
H is isomorphic to G, z

Y

Accept if and
only if 2 = b

Proof method

17 Zero Knowledge Proofs

An interactive proof system is zero-knowledge if whatever can be efficiently computed after interacting with P on
input x € L can also be computed given only x. This should be true even when P is interacting with a malicious
verifier.

Again, this is most easily demonstrated with an example. Let us return to Graph Isomorphism, and show that we
can prove the input graphs Gy, Gy are isomorphic without revealing the isomorphism.

Common input (Go, G1)

Prover / \ Verifier

H =0 (Go) b« {0,1}
Given: 7 such that
T (GO) = G Show me that H is isomorphic to Gy
Sample a random
permutation o s ifb=0 Accept if and only
corn~t, ifb=1 if’y(Gb) = H

Proof method

Consider at the same time that we have the following graphs, allowing us to demonstrate the isomorphism 7
between Gy and G, without ever revealing it:

18 Commitments

An example bit commitment scheme:
Given a PRG G : |G (s)| = 3-|s|, and a hard-core predicate h : {0,1}" — {0, 1}, the sender is given v € {0, 1} as input.

Public parameters: OWF f, hard-core predicate h

S R

Commit phase
commit = (f(x), h(z) ® v) Store commitment

Input: v € {0,1}

Sample x + {0,1}" Reveal phase
Reveal: (v, z) f(z) matches

and h(x) @ v matches

On reveal, accept v iff:

Bit-commitment scheme (OWF-based)
As we can see, in the commitment (very very informal), f (x) is functioning as a signature to verify the value of z,
and h (z) @ v is function as a signature to verify the value of v.

This can be extended to coin flips over the telephone (for example), by having Alice commit to her result, Bob respond
with his result, and Alice then reveal her result. This way, neither Alice, nor Bob can change their results according
to what the other said.

19 ZKP for G3C with Commitments

Common input: graph G = (V, E)

Prover Verifier
Commit phase
Commitments {com, },ev Choose random
Private input: colouring for ¢(v) edge (u,v) € E

Choose random per-

mutation 7 € 53 Challenge phase Accept iff:

Define ¢ = mo @ Challenge edge (u,v) € E openings are valid
Commit to ¢(v) for all v € V ¢(u), ¢(v) € {1,2,3}

¢(u) # ¢(v)

Reveal phase
Open (¢(u),) and (¢(v), 1)

One round of the G3C zero-knowledge protocol

10

20 Cryptography Primitives

RSA Factoring
—_—

Assumption Assumption
TDP
\ CPA-Secure Key
/ PKE Agreement
DDH
Assumption
CDH DL CRHF
e — —
Assumption Assumption

11

OWF
PRG
PRF / PRP
MAC
— Signatures

Commitments

CPA / CCA-Secure
Symmetric-Key
Encryption

l

Zero Knowledge Proofs for NP

Part 11
Lecture 1 — 2025-10-22

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

21 Course overview

This is the second year of this format, before this it was the same name, but different format.

21.1 What is cryptography?

Cryptography is an ancient art, that for many years focused mainly on secret communication. For as long as humans
have been communicating, we have wanted to be able to communicate in ways that hides the contents from people
who are not meant to know it. The main consumers were military, and intelligence. It generally relied on creativity,
and personal skill. From 500BC until the 20th century, there was a complete cycle of design — break — repair —
break — repair. We will focus on how one breaks this cycle. We will focus on modern cryptography, which underwent
a radical change in the 20th century, where it became a science, and covers much more than secret communication. It
is now consumed by everyone, and relies on rigorous models, definitions, and proofs.

So, to answer our question: The scientific study of techniques for designing systems that withstand adversarial
behaviour.

21.2 Course objectives

We want to introduce the basic paradigms, principles of cryptography, and explore a variety of cryptographic tools
and systems. We will learn how to reason about their security, and how to use them correctly. By the end of this
course we will be educated crypto consumers, and know why it is dangerous to assume you are a “crypto expert”
(spoiler, you're really really not. Do not ever roll your own crypto), and be able to learn more about cryptography
on our own.

Tentative structure:

1. Weeks 1 - 5: Private key cryptography

2. Weeks 6 - 10: Public key cryptography

3. Weeks 11 - 13: Zero knowledge proofs and secret computation

We are recommended to read

o J. Katz, and Y. Lindell’s Introduction to Modern Cryptography

e 0. Goldreich Foundations of Cryptography - Volume 1: Basic tools

e O. Goldreich Foundations of Cryptography - Volume 2: Basic applications
e Coursera’s Cryptography course by Professor Jonathan Katz

There will be somewhere between 3 and 5 homeworks, depending on how bothered the lecturer can be, and our
final grade will be made up of 10% the n — 1 best homeworks, and 90% final exam.

22 Symmetric key encryption

Let there be Alice, and Bob, located in different places, that want to communicate secretly. Eve will observe their
communications. Our assumption is that Alice, and Bob, share a secret key, that is not known to Eve. This key is
used for both encryption, and decryption. This key is some collection of bits, which may be used as described above.
Let us formalise these concepts: An encryption system includes three algorithms: KeyGen, Enc, Dec. Let there be
the key space K, plaintext / message space M, and ciphertext space C.

e The key generation algorithm KeyGen outputs a key k € K
e The encryption algorithm Enc takes a key k € IC, and a plaintext m € M, and outputs a ciphertext c € C
e Decryption algorithm Dec takes a key k € K, and a ciphertext ¢ € C, and outputs a plaintext m € M

k <+ KeyGen()

¢ < Encg (m)

m = Decy, (¢)

In this course + indicates randomised generation, and = indicates deterministic generation.

12

https://github.com/robomarvin1501/notes_intro_to_crypto
https://www.coursera.org/learn/cryptography

22.1 Correctness

An encryption system is defined as correct if
Vk € IC,m € M Decy, (Ency, (m)) =m

Kerckhoff’s principle: All of KeyGen, Enc, and Dec are publicly known, and the only secret is the key k. A crypto
system for whom the only security is the secrecy of the algorithms is not secure.

22.2 Caesar Cipher
Let there be:

o KeyGen uniformly samples k « {0, ...,25}

e M={a,...,z2} and C={4,..., 2}

 Enc shifts each letter k positions forward (wrapping around from z to a)
e Dec performs the same wrapping shift, but backwards

This is not a secure cipher (shocking, I know). Why? There are only 26 possible keys. An important part of good
ciphers is that |K| must not allow an exhaustive search.

22.3 Substitution cipher
Let there be:
o KeyGen uniformly samples a permutation k over {a,...,z}
e M={a,...,z2} and C = {4,..., 2}
e Enc applies the permutation k£ to each letter
o Dec applies the inverse permutation k~*
This is not secure either (shocking, I know). Despite there being many more keys (26!), this is particularly susceptible

to frequency analysis, where we use statistical patterns of the frequencies of different letters in the source language.

22.4 Vigeneére cipher
Let there be:

o KeyGen uniformly samples k = kg ... ki1 < {0,..., 25}t
e M={a,...,2} and C = {A4,..., 2}

o Enc shifts the ith letter k; 04 ¢ positions forward

e Dec applies the inverse shift

Not secure, it is trickier, but since the key is repeated, we can figure out the length of the key, and establish the
different parts of the key through frequency analysis once more.

23 Historical ciphers
There is a fascinating history of interesting, creative (and now broken) ideas. It was particularly influenced by world

history (e.g. the cryptanalysis of the German enigma in World War 2). Creating a crypto system is very very hard.
Trying to do so will probably result in one that is easily broken.

13

24 Basic principles of modern cryptography

Analysing the security of a cryptographic system involves:

1. Formalising a precise definition of security (security = computational ability x type of attack x notion of
“break”)

2. Stating the underlying assumptions: Others will attempt to validate (or invalidate) your assumptions
3. Proving that the definition is satisfied given the assumptions. Despite this, schemes can still be broken.
There are a few attacks on encryption schemes:

e Known ciphertext attack: Eve may observe a challenge ciphertext c*

o Known plaintext attack: Eve learns pairs (m, Encg (m)), and then observes a challenge ciphertext ¢*

o Chosen plaintext attack (CPA): Eve learns airs (m, Ency (m)) for messages m of her choice, then observes a
challenge ciphertext c*

o Chosen ciphertext attack: (CCA) Eve learns pairs (m, Ency (m)), for messages m of her choice, and pairs
(¢, Decy, (¢)) for ciphertexts ¢ of her choice, and then observes a challenge ciphertext ¢* # ¢

So, what does it mean to break an encryption scheme? Does it mean recovering the key? Recovering the plaintext?
Recovering part of the plaintext? Not really any of these. Breaking an encryption scheme means learning anything
“meaningful” about the plaintext? So, how do we define “meaningful”? We’ll come back to that.

We shall characterise an adversary’s computational abilities as follows:

o Typically (not always) run in probabilistic polynomial time (PPT)

e Sometimes, we will say computationally unbounded

25 Perfect secrecy

Let (KeyGen, Enc, Dec) be a symmetric key encryption scheme. Alice and Bob share a key k + KeyGen(). Eve
known an a-priori distribution M. Informally, perfect secrecy is that the ciphertext ¢ does not reveal any information
about the plaintext m.

Definition 25.1 (Perfect secrecy). A symmetric key encryption scheme Il = (KeyGen, Enc, Dec) is perfectly secret
if for every distribution over M, and for every m € M, and for every c € C it holds that

PrM =m|C =] =Pr[M =m]

That s, the probability that some plaintext is the plaintext given the ciphertext, is the same as the probability that
some plaintext is the plaintext, with no priors.

Consider a die. If T throw a die, the probability of guessing its result is % The encryption system is perfect, if

given an encrypted form of what number was thrown, the probability of knowing what number was thrown is still %.
Lemma 1. A symmetric key encryption scheme 11 is perfectly secret if and only if for every distribution over M,
for every m € M, and for every c € C, it holds that

Pr[C =c¢M=m]=Pr[C=(
Le. the probability of a specific message encoding to a specific ciphertext is the same for every message in the world.
. Let there be a distribution over M, m € M, and ¢ € C. Let us assume that

Pr[C =c¢M=m]=Pr[C=(

therefore
Pr[C =c/M=m]-P[M=m]
rl m| d Pr[C = (|
= Pr[M = m)|
The other direction is the exact same thing, uses Bayes theorem, but swapping M and C. O

14

Lemma 2. A symmetric key encryption scheme m is perfectly secret if and only if for every distribution over M,
for every mg, my1 € M and for every c € C it holds that

Pr[C = ¢|M = mg] = Pr[C = ¢|M = my]

O
Theorem 2. The shift and substitution ciphers are not perfectly secret for plaintezts of length [> 1.
. Shift cipher:
Pr[C =“AB”|M = “ab”] = % #0=Pr[C =“AB”|M = “aa”]
O
26 One time pad
Created by Turing.
« K=M=C={0,1}
o KeyGen uniformly samples k + {0, 1}l
o Ency(m)=mak
e Decp(c)=cDk
This is correct since:
Vk € K, m € M Decy, (Ency, [m]) = Decy, [m @kl =mdkdk=m
Theorem 3 (Perfect secrecy). The one time pad is perfectly secret for plaintexts of any length
. Let us fix mg,m; € M, and ¢ € C. We will prove that
Pr[C =c|M =mg] = Pr[C =M =m4]
For each b € {0,1} it holds that
Pr[C =c|M =my)=Pr[M e K = c|M = my)
= Prm, ® K = (|
= Pr[K = c®my)
_ 1
9l
This is true for every mg, m1, and so is generalised, as is required. O

26.1 Limitations of the one time pad

Keys have to be as long as the plaintexts, and so are very long. Additionally, there is “Two time” insecurity. Given
¢ = Enci (m) and ¢ = Encg (m'), we can learn ¢ & ¢ = m @ m/. There is an additional insecurity against known
plaintext attacks. From m and ¢ = Ency (m) we can recover k = m @ c.

Theorem 4. Let II be a symmetric encryption scheme, with key space KC, and message space M. If I1 is perfectly
secret, then |K| > | M|

. Let us assume that || < | M|, and then we will show that the scheme is not perfectly secret. Let M be the uniform
distribution over M, and fix some m € M. Let us also fix some ¢ € C, which is a possible encryption of m. Let

M (c) = {m :1m = Dec;, (¢) for some ke IC}

Then |[M (c)] < |K|. Thus, the assumption that || < |[M] implies that |[M (c)| < |M]|. In particular, there exists
some m* € M :m* ¢ M (c). This implies that

PriM=m*:C=¢=0# = Pr[M =m"|

b
M|

and so the scheme is not perfectly secret. O

15

26.2 Characterising perfect secrecy

Theorem 5 (Shannon’s theorem). Let I be a symmetric key encryption scheme for which |K| = |[M| = |C|. I is
perfectly secret if and only if the following two conditions hold:

1. FEvery k € K chosen by KeyGen is chosen with a probability of ﬁ

2. For every m € M, and c € C, there exists exactly one k € K such that Ency, (m) outputs ¢

27 Tutorial

Behold: Another definition of perfect secrecy:

Exercise 1 (Perfect secrecy). For every encryption system II, that has perfect secrecy: For every distribution M on
the plaintext space M, and for every 2 ciphertexts cg,c1 € C, it is true that

Pr[C = ¢p] = Pr|C = ¢]
Solution. This is incorrect. Let

KeyGen : k < {0,1}'

0, with probability
1

Dec(c,k) : ¢ ® k = m where ¢ = ¢ without b

) . Enc(k,m) : ¢ = k & m||b here the double line indicates appending
with probability

9

Let there be an additional bin b = {

WK Wl

So, as we can see here, it does not hold that Pr[C = ¢g] = Pr[C = ¢1], since 2rds of the ciphertexts will end with 1,
and % will end with 0. O

Exercise 2. Given II that has perfect secrecy, distribution M on M. Let there be 2 messages mg, m; € M. For every
ceC:
Pr[C =c|M =mg] = Pr[C =M =m4]

Solution. Correct: By using Bayes law:

Pr[C =c|M =mg] = Pr[C
Pr|C =cM=m]=Pr[C

]
]

INCOMPLETE As required O

c
c

Exercise 3. Let us define O/T\P, which is the same as OTP, but the KeyGen is defined as follows
KeyGen : k + {0,1}\ {o'}
Is this secure?

Solution. No. Let there be M « {0,1}', and so

Pr[M:m|C:m]:0#ﬁ:Pr[M:m]

when M «+ {0,1} O

16

Part 111
Lecture 2 - Private key encryption — 2025-10-29

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

28 Reminder

Last week we discussed symmetric encryption, and perfect secrecy:
Pr[M =m|C = ¢] = Pr[M = m)

which has the limitations of only considering security for a single message, and that the key must be as long as the
message.

29 Computational security

Computational security is that all the information is present, given Ency (m) one may completely determine k and m.
It should be computationally infeasible to retrieve any useful information. Here we have two realistic relaxations
compared to last week:

1. Security is preserved only against computationally bounded adversaries (e.g. 2000 years using currently
technology)

2. Allow such adversaries to succeed with some negligible probability (small enough that it will essentially never
happen)

29.1 Approaches
29.1.1 Concrete approach

Definition 29.1. A scheme is (t,e)-secure if every adversary, running for time at most t succeeds in breaking the
scheme with probability at most €.

We have some sample parameters of ¢ = 260, which is the order of the number of seconds since the big bang, and
e = 2759 which is order of occurring once every 100 billion years.
This is very useful in practice, and may be tailored to specific technology. However, in general we would like a notion
of security that is essentially independent of the underlying technology.

29.1.2 Asymptotic approach

Definition 29.2. A scheme is secure if every probabilistic polynomial-time (PPT) adversary succeeds in breaking
the scheme with only negligible probability.

Definition 29.3 (PPT). An algorithm A runs in probabilistic polynomial-time if there exists a polynomial p ()
such that, for any input x € {0,1}", and a random tape r € {0,1}", the computation of A (z;r) terminates within

p(|z[) steps

The security parameter:

¢ KeyGen takes as input the security parameter 1", and outputs k € IC,,

o Keys produced by KeyGen (1) should provide security against adversaries whose running time is polynomial

in n (so increasing n provides better security)
e K=JKn M=[JM,, c=]cCn
neN neN neN

Definition 29.4 (Negligible). A function f: N — RY is negligible if for every polynomial p(-) there exists an N
such that ¥Yn > N, it holds that f (n) < ﬁ

1 1 1
For example, 27", 27V7" 2~ log®(n) are all negligible functions, where -, ———, — are non negligible.
2 log” (n) n°

Theorem 6. Let vy (n), vy (n) be negligible functions. Then, for any positive polynomial p (n), the function p(n) -
(v1 (n) +v2 (n)) is negligible.

17

https://github.com/robomarvin1501/notes_intro_to_crypto

1
Proof . A negligible function is —

~)

where p is larger than every polynomial. As a result, whatever we put in the
numerator, will not impact our result. Therefore, the sum remains a negligible function. Multiplying by a polynomial

is like writing 5501 subtracting in the powers: n!~¢, but since [is asymptotically larger than all polynomials, we still
P
have a negligible function. O

So why these choices? “Efficient”: PPT, and “negligible”: smaller than any inverse polynomial. It is intuitively
well-behaved under composition:

poly (n) - poly (n) = poly (n)
Polynomially many invocations of a PPT algorithm is still a PPT algorithm.
poly (n) - negligible (n) = negligible (n)

Polynomially many invocations of a PPT algorithm that succeeds with a negligible probability is an algorithm that
succeeds with a negligible probability overall.

30 Indistinguishable encryptions

The most basic notion of security for symmetric-key encryption: Encryptions of any two messages should be indistin-
guishable. The adversary still observes only a single ciphertext.

Ency, (mg) = Encg (mq)

This seems weaker compared to perfect secrecy. Perfectly-secure encryption reveals no information, so intuitively,
what security does indistinguishable encryptions provide?

Given II = (KeyGen, Enc,dec), and an adversary A, consider the experiment IN Dy 4 (n), where one of two
plaintexts mg, m; is encrypted by the system, and then 4 needs to figure out which plaintext it was from the returned
ciphertext c. The system is indistinguishable if A cannot do better than a coin flip.

Definition 30.1 (Indistinguishable encryption). II has indistinguishable encryption if for every PPT adversary A

there exists a negligible function v (-) such that

Pr{INDp 4 (n) =1] < %—Fv(n)

where the probability is taken over the random coins used by A, and by the experiment.
Recall the one time pad:
« K=M=C={0,1}
o KeyGen uniformly samples k + {0, 1}l
o Enc,(m)=ma®k, and Decy (¢) =c Dk

Perfectly secure since Pr[M = m|C = ¢] = Pr[M = m], but requires the key k to be as long as the message m. Way
too long. Can we guarantee computational security with shorter keys?

31 Pseudo-random generator

Our goal is to expand a short, random seed into a long “random looking” value:
G:{0,1}' — {0,1}!
“Random looking” means “indistinguishable” from the uniform distribution.

Definition 31.1 (PRG). Let G : {0,1}1 — {O,l}l be a polynomial-time computable function, and let () be a

polynomial such that for any input s € {0,1}", we have G (s) € {0, l}l("). Then, G is a pseudorandom generator
if the following two conditions hold:

o Ezpansion: 1 (n) >n

o Pseudorandomness: For every PPT “distinguisher” D, there exists a negligible function v (-) such that

D(G(s) =1 - [D(r)=1]| <v(n)

r r
s+{0,1}" r{0,1}1(™

The notation z < {0,1}" denotes that x is sampled from the uniform distribution over {0,1}"" (so each value

1
is obtained with the probability —)
21’TL

18

31.1 Do PRGs even exist?
If so, then how difficult is it to construct a PRG? Recall two properties:
o Expansion: |G (s)| > |s]
o Pseudorandomness: For every PPT D, there exists a negligible v () such that:

e — f— <
P @) =1 P D) =1 <o)

Let us try. Consider the following candidates that expand a seed s = s1...s, € {0,1}" by a single bit. Let us
define
G (s) =s0

Is it distinguishable from a truly random string? Yes. A truly random string may finish in 1, whereas this may not.
How about
G(s)=51...8.51

It is distinguishable, since we can just check if we begin with the same bit as with which we started.
Finally:
G(s)=81...802 1 2=81D D sy,

This is also distinguishable, since we can just check if the final bit is the xor of the bits before it.
The existence of any PRG implies P # N P. Constructions are known based on various computational assumptions.
We have not created a PRG that may be proven to be such, since that would then prove that P # N P.

Theorem 7. Let there be G : {0,1}" — {0,1}*". There ezists D (not computationally efficient) such that

D (G (s) = 1)] -

T T
s+{0,1}™ r«{0,1}?"

Proof . Where |z| = 2n,
D(z) = Im(G) = {z € {0,1)>" 35 | G (s) = z}

We are asking if it is true that z € Im (G). If so, we will return 1, and otherwise 0. This distinguisher works since

Pr[D(G(s) =1] =1

prip(r) =1 = T2 <

1
on
O
Useful fact: All efficiently-testable statistical properties of the uniform distribution are preserved by the output of
any PRG. For example: If G is a PRG, then there exists a negligible function v () such that

1
Pr |Fraction of 1s in G (s) < = | <wv(n)
s+{0,1}™ 4

32 PRG-based OTP

Let us assume that there exists PRGs. Let G be a PRG with expansion [(n). K,, = {0,1}", but M,, = C,, = {0, l}l(").
KeyGen (1) samples k < {0,1}". Enci (m) = m & G (k), and Decy (¢c) = ¢ ® G (k).
So, given k, we generate G (k), where |G (k)| > |k|, and then ¢ = G (k) & m.

Theorem 8. If G is a PRG, then the scheme has indistinguishable encryptions.

Proof . Tt’s not perfect, the key is smaller than the messages, and we proved that the key must be the same length as
the messages. We shall prove by reduction:

e Given an adversary A, for the encryption scheme, construct a distinguisher D for the PRG
o D internally emulates A

e D’s efficiency, and advantage are Polynomially related to A’s

19

So in short, if G is a PRG, then II has indistinguishable encryptions. We will prove by contradiction, by assuming
that IT is not IE, and therefore G is not a PRG (but we know this to be false, and thus have a contradiction).
Behold, the actual proof: Let us assume that there exists a PPT adversary A and a polynomial p (n) such that

1 1
PriINDp4(n) =1 2> -+ ——
INDia(n) =12 5+~
for infinitely many ns.
We will show that there exists a PPT distinguisher D and a polynomial ¢ (n), such that

1
Pr [D(G(s))=1]— Pr D(r)=1]| > —

el [D(G(s)) = 1] . [D(r)=1]| = 7
for infinitely many ns. Or in short, if there exists the adversary, then we can use it to construct the distinguisher.
The distinguisher D, on input z invokes A, and obtains (mg,m1). It samples b < {0,1}, and let ¥’ = A(z @ my). It
then outputs 1 if and only if &’ = b.
From here we get 2 cases:

o Case 1: z + {0, 1}l(n). A’s view is independent of b, and so
1

Pr D(z)=1==
24-{0,1}1(™) 2

o Case 2: z = G (k), where k «+ {0,1}". A’s view is identical to the experiment /N Dy 4 and so it is equivalent
to trying to find if they are distinguishable:

1 1
P D(G(k))=1=Pr[IND =1]>=-+ —
oD [P(G () = 1) = PrINDna(n) =1] 2 5 + o
So overall we constructed a PPT distinguisher D such that
1
Pr [D(G(s)=1]— Pr D(r)=1|| > —
8<—{0,1}"[(G s))] r«{0,1}1(™ (r) I|= p(n)
which contradicts the theorem that G is a PRG. O

We have made significant progress, but we still have the problem that each key may only be used once.

33 Indistinguishable encryptions revisited

So far, this has enabled it to be infeasible to distinguish between Ency (mg) and Ency (mq), but can we learn infor-
mation of m from Ency, (m)

Theorem 9 (Toy theorem). Let II have indistinguishable encryptions. Then, for any PPT adversary B, there exists
a negligible function v () such that

Pr[B(1", Ency, (m)) = LSB (m)] < % +o(n)

I(n)

where m < {0,1}"" is sampled uniformly

Proof by reduction. Assume a contradiction that there exists a PPT adversary B and a polynomial p (n) such that

n — L !
Pr(B (1", Bncy (m) = LSB(m)] < 5 + -

for infinitely many ns. We then show that there exists a PPT adversary A and a polynomial ¢ (n) such that

1 1
Pr[INDp 4 (n) =1] > 5 +)
for infinitely many ns.

Behold the proof: For each o € {0,1}, let I, C {0, l}l be the set of messages whose LSB is 0. We will create the
adversary 4, which on input 1" will sample mg < Iy, and m; < I; uniformly and independently. On input c*, it will
output b’ = B (1™, ¢*). In short, A creates 2 messages, receives the encrypted form of one of them, and gives it to 5.
If B correctly assumes the LSB, then we win, if not, we fail.

Pr[INDp 4 (n) =1] =Pr[B(1", Ency (mp)) = b]

L b BA Eney (me)) = 0]+ & Pr [BA™, Ency (m1)) = 1]
2 mo(—[o 2 mleh
1 1
— P BU"E — LSB(m)] > & +
me{£7l}l[(%, Bnes (m)) ml =5 p(n)

20

33.1 Semantic security

Goldwasser-Micali in 1982: “Whatever” can be computed efficiently, given the ciphertext, can essentially be computed
efficiently without the ciphertext.

Definition 33.1 (Semantically secure). II is semantically secure if for every adversary A there exists a PPT
“simulator” S such that for every efficiently sample-able plaintext distribution M = {M,} and all polynomial-time
computable functions f and h, there exists a negligible function v () such that

neN’

[Pr[A(1", Ency (m),h(m)) = f(m)] = Pr[§ (1", h(m)) = f (m)]| <v(n)
where k + KeyGen (1) and m <+ M,

Or in other words, whatever you can learn from the encryption, can also be efficiently learnt without the encryption,
or most simply, the ciphertext teaches us nothing.

Theorem 10. II is semantically secure if and only if it has indistinguishable encryption

Why do we need both notions? Well, semantic security explains “what security means”, where indistinguishability
of encryption is “easier with which to work”. Since they are equivalent, we can use IE, to show semantic security.

33.2 One way functions

Definition 33.2. A polynomial-time computable function f : {0,1}* — {0,1}" is one way if for any PPT A

Pr [A(1"y) e f! < negligible
y@f(Un)[(y) e f (y)] gligible (y)

In short, easy to compute, but hard to invert on a random image.

Informal theorem: One way functions are the basis for foundational cryptography. They are complete for private
key cryptography (PRG < OWF, as in, one can make PRGs from one way functions, and vice versa)

Some recommended reading: J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapter 3 (Private-
Key Encryption): 3.0 — 3.3

21

Part IV
Lecture 3 - Private key encryption 11 —
2025-11-05

Notice: If you find any mistakes, please open an issue at https://github. com/robomarvini501/notes_intro_to_crypto

34 Recap

Last week we discussed computational secrecy, which includes indistinguishable encryptions, semantic security. To
achieve this we used the tool of Pseudorandom Generators (PRGs), and investigated One time pads that use PRGs.
These have short keys, but each key can still only be used once.

35 Computational Indistinguishability

Two probability distributions X = {X, }, .y and Y = {Y,,}, .y are computationally indistinguishable if no “efficient”
algorithm “can tell them apart”.

Example I (PRG G):
X, =G (s) for s+ {0,1}"
Y, = uniform distribution over {0, 1}
Example II (IND-secure): Let II = (KeyGen, Enc, Dec):
X, = Encyi (000) for k < KeyGen (1M)Y, = Enci (101) for k «+ KeyGen (1)

Definition 35.1 (Computationally indistinguishable). Two probability distributions X = {Xy},cn andY = {Y,}, y
are computationally indistinguishable if for every PPT distinguisher D there exists a negligible function v () such
that

Pr [D(1"z)=1]—- Pr [D(1"y) =1]| <v(n)

zXp y<Yn

This is denoted as X =Y.
Theorem 11. Let G : {0,1}" — {0,1}*" be a PRG, then H (s1,s5) = G (s1)||G (s2) is a PRG.

Proof . Our paradigm for this kind of proof is reduction via a hybrid argument.
Reduction: Given a distinguisher D, for H, construct a distinguisher A for G.
Hybrid argument: Let us suppose that between G (s1),G (s2) D has advantage €. Let us create a new PRG, that
given sy, Sg, ignores sqo, and returns G (s1),r2. So, between G (s1),G (s2) and G (s1), 72, it holds that D has at least

the advantage %, or between G (s1),r2 and 71,72 it holds that D has the advantage of at least % So:

e <[Pr[D (G (s1) [|G (s2)) = 1] = Pr[D (rra) = 1]]
< [Pr[D (G (1) |G (s2)) = 1] = Pr[D (G (s1) [|r2) = 1][+ [Pr[D (G (s1) [[r2) = 1] = Pr[D (ri]r2) = 1]|

Let us define A, which on input z € {0, 1}4” with sample s; < {0,1}" and output D (G (s1)||2). In this case, we
have created an adversary that distinguishes between the first 2 cases based off the difference of G (s2) and ro. We
may similarly create a second adversary that performs the same, and outputs D (Z||r3). Since one of these transitions

must be distinguishable with an advantage of at least %, we have found an adversary A for G, which is a contradiction
to the given that G is a PRG. O

36 Security against a CPA

Given IT = (KeyGen, Enc, Dec) and an adversary A, we considered the experiment IN Dy 4 (n). Does this experiment
model realistic attacks? Not especially, since it assumes that it can only observe a single encryption, which is not
especially realistic.

CPA is an extension of this system, where once again, we choose a key k < KeyGen (1™), A provides mg, m1, we
choose b + {0, 1}, return ¢* + Ency, (myp), and A needs to choose b'. Here, A provides as many ms for encryption as
it likes, which are encrypted by k. Then it provides mg,m1, b is chosen, and ¢* < Ency (my) is returned to A. A can
then request more encryptions of ms, and then has to return o', which value it thought b to be. Note, OTP does not
stand up to this type of attack, nor does any other deterministic encryption system.

It may also be said that A has access to an encryption oracle, denoted AF™ex().

22

https://github.com/robomarvin1501/notes_intro_to_crypto

Definition 36.1 (CPA secure). II has indistinguishable encryptions under a chosen plaintext attack if for
every PPT adversary A there exists a negligible function v (-) such that

Pr [INDG5! (n) =1] < = + v (n)

So, a IT that is CPA secure must used a randomised encryption algorithm. We will also provide the notation

1, ifd =b

INDSPA (n) =
1.4 (n) 0, otherwise

We shall ask, is CPA security “too strong”? Well, no, since adversaries may often know, influence, or even determine
the encrypted content, and CPA security captures all such influences.

37 Pseudorandom functions

A pseudorandom function is a function that “looks like” a truly random function. What is a truly random function?
Let there be the sets of all the functions in the world (relevant to us):

Func,_; = the set of all functions from {0,1}" to {0, l}l

1{0,1}"] n
|Func,—| = ‘{O, 1}l‘ = 2l2

A truly random function is a function h, sampled uniformly from Func,_;. For each x € {0,1}" the value
h(x) € {0,1}" is chosen uniformly and independently of all other ’s.

Pseudorandom functions are an efficiently computable keyed function
Fk () : {07 1}” - {07 1}l

that is indistinguishable from a truly random function. Our distinguisher D needs to provide an input x, and then
distinguish whether or not it received in return h (x), with h sampled uniformly from Func,,;, or if it received Fy, (),
where k is sampled uniformly from {0,1}".

Definition 37.1 (PRF). An efficiently computable keyed function
F:{0,1}" x {0,1}" — {0,1}}™
is pseudorandom if for every PPT distinguisher D there exists a negligible function v () such that
’Pr [DFk(') (1") = 1} _Pr [Dh(‘) (1" = 1] (<v(n)

where k < {0,1}" and h < Func,_,,

This defines the security of PRFs with respect to uniformly distributed keys k € {0,1}". More generally, keys may be
of any length, and not uniformly distributed. This is captured via a PPT key-generation algorithm k < KeyGen (1™).
The methodology for using PRFs is as follows:

1. Prove security assuming a truly random function is used

2. Prove that if an adversary can break the scheme when PRF is used, then it can be used to distinguish the PRF
from a truly random function
38 CPA secure encryptions from PRFs
Let F:{0,1}" x {0,1}" — {0,1}' be a PRF.
 Key generation: Sample k <+ {0,1}"
 Encryption: On input & € {0,1}" and m € {0, 1}1, sample r + {0, l}l and we get output
c=(r,F (r) ®m)

o Decryption: On input k € {0,1}" and ¢ = (r, s), output m = Fj, (r) & s
Theorem 12. [f F is a PRF, then the scheme Il above is CPA secure

23

Proof . We will begin by showing that this is a correct encryption scheme:

r <« {0,1}"
Enc(k,m) = (r, F, (r) ®m)
Dec(k,(r,8)) = Fr (r)® s
= Fy (r) @ (Fy (r) & m)

=m

So why does encrypting the same message twice result in a different ¢? Due to r changing every time, and so Fy, (r)
is a different, completely random seeming series of bits, every time. Consider m = 0, encrypted many different times.
The results will be:

Which are all different, completely random seeming series of bits.

So, how will we prove this? Reduction! As always!
Consider the above scheme, called IIrp. Let us define the scheme IIj, where instead of using Fj, we use h. We will
note that IIj is not efficient, and will not be used in reality, since it uses a truly random function. We will show that
IT;, is CPA, and that we cannot distinguish between II;, and IIr, and thus I1r is also CPA.

Let A be a PPT adversary, then

Pr [INDGP% (n) = 1] < |Pr [INDF% (n) = 1] — Pr [INDFF% (n) = 1]|
+Pr [INDFP4 (n) = 1]

We will begin by claiming that there exists a negligible v (n) such that

|Pr [INDFE4 (n) = 1] —= Pr [IND{4 (n) = 1]| < v (n)

We will additionally claim: Let ¢ (n) be the number of queries made by A to the encryption oracle, then

q(n)

Pr[INDGP4 (n) =1] < o

+

| —

So,

Pr [INDGEY (n) = 1] < |Pr [INDGF% (n) = 1] — Pr [INDFF% (n) = 1]|
+Pr [INDFP 4 (n) = 1]

<iy (q(") +v(n)>

-2 2n

Let us begin with the first claim: There exists negligible v (n)
|Pr [INDFE4 (n) = 1] — Pr [IND{4 (n) = 1]| < v (n)

and prove by reduction: Given an adversary A for the encryption scheme, construct a distinguisher D for the PRF.
D has oracle access to a function O, which is either Fj, (-), or a truly random A (-). D emulates the CPA experiment
to A, and observes whether A succeeds. If A succeeds, D outputs 1, else, D outputs 0.

Let us assume the contradiction that there exists a PPT adversary A, and a polynomial p (n) such that

|Pr [INDGE4 (n) = 1] = Pr[INDSGP4 (n) = 1] Z]%n)

for infinitely many ns. The distinguisher D€ will sample b < {0, 1}, and invoke A. It will respond to A’s encryption,
and challenge queries, using O, and output 1 if and only if ¥’ = b. This leaves us with two cases:

1. O = Fy where k + {0,1}". A’s view is identical to IND{F% (n)

Pr DFk() (]_") =]_] = Pr [INDgff_i\ (n) = 1]

24

2. O = h, where h + Func,_;. Here, A’s view is identical to INDg::ﬁ (n) and
Pr [Dh(‘) 1" = 1} — Pr[INDGT4 (n) = 1]

Thus a contradiction, and we have shown claim 1.
Claim 2: Let ¢ (n) be the number of queries made by A to the encryption oracle, then

q(n)
2’I'L

1
Pr[INDGP4 (n) =1] < 5+
Each encryption query m; is answered with (r;, h (r;) @ m;) for a uniform, and independently chosen 7; + {0,1}".

The repeat is the event in which r* is used at least once by the encryption oracle (i.e. r* = r;). If repeat does not
occur, then A (r*) is completely uniform and independent of A’s view, and therefore A’s view is independent of b:

1
Pr [INDgfjﬁ (n) = 1|Repeat| = 3

So
Pr [INDgij (n)=1] <Pr [INDg’if\ (n) = 1| Repeat| + Pr[Repeat)
1.9
2t o

O

Our world of crypto primitives so far is from PRF, we can build both PRG, and CPA-secure symmetric key
encryption, and from both PRG, and CPA-secure symmetric key encryption, we can build IND-secure symmetric key
encryption.

W via construction (
PRF J >L PRG
used to build implies
CPA-secure w \(IND-secure
symmetric encryptionj implies 'Lsymmetric encryption

39 Practical heuristics block ciphers

In practice, block ciphers are designed to be secure instantiations of pseudorandom permutations (PRPs). A block
cipher is an efficiently-computable keyed permutation

F:{0,1}" x {0,1} — {0,1}

They have concrete security rather than asymptotic security, and a block cipher is considered “secure” if the best
known “attack” requires time roughly 2" (abrute-force search for the key).

DES was the The Data Encryption Standard. It was developed in the 1970s by IBM, with help from the NSA,
and adopted in 1977. The key length is 56 bits, with block length of 64 bits. The best known attack in practice is
essentially a brute force key search, which is eminently possible by your smartphone, since the key length is so short.
Thus it is no longer considered secure. It remains widely used in the strengthened form 3DES:

BDESk, ky.ky (¥) = DESy, (DES;! (DES}, (v)))

So there are 3 - 56 bit keys, but can be broken in 2256 It is also (unsurprisingly) slower than DES.

These days, we have moved on from DES to AES. In 1997 NIST published a call fro candidate block ciphers
to replace DES. 15 candidates were proposed, each being extensively analysed by the public and other teams. The
winner (originally called Rijndael) was announced in late 2000, and was chosen based on security, efficiency, ability
to implement in hardware, and so on. It uses key lengths of 128/192/256, with a block length of 128 bits. To date,
there are no known practical attacks better than brute-force key search. It is massively widely used, with all modern
hardware having built in optimisations. Recall the definition of CPA secure encryption from any PRF:

Ency, (m;r) = (r, F, (r) @ m)

25

In practice, AES as a PRF enables one to encrypt 128 bit blocks:
Ency, (m;r) = (r, AESg (r) & m)

Why not simply AESy (m)? AES is deterministic, and so susceptible to CPA attacks.
In order to encrypt long messages, we break them up into 128 bit blocks:

Enci (my...myry...r) = (r1, AESk (r1) @mq) ... (r, AESE (1) @ my)

This has the drawback of the ciphertext length being twice the plaintext. This can be improved by changing the
structure slightly:

Ency, (my...my;r1) = (r, AESK (r+ 1) @ mq) (AESE (r +2) @ ma) ... (AESk (r +1) & my)
This is called counter mode

Theorem 13. If F' is a PRF, then counter mode is CPA secure.
Proof overview. Assume for simplicity that all messages consist of | blocks. The sequence
si=(ri, Fp(ri+1),...,Fx(r; +1))
used for encrypting the ith message is pseudorandom. Any s;, and s;; are “independent” , unless r; +j =ry + 35 [
There is also ECB mode (electronic code book), where
Ency, (my...my) = (Fx, (m1), Fr, (ma),..., Fy (my))

ECB mode is deterministic and thus not secure.

ECB mode
encryption

Original
image

Figure 1: ECB mode

We can map from PRGs to PRFs
Theorem 14. Let G be a PRG with expansion 2n, then there exists a PRF F mapping n-bit inputs to n-bit outputs
We will construct as follows: We will denote G (s) = Gq (s) G1 (s), where
1Go (s)] = |G (s)| = |s]
We will define
Fp(2) =Gy, (...Gyy (K)...)
where x =21 ... 2,

We can then construct a binomial tree, starting at k, who has the children Gy (k) and Gy (k), and keep this iteration
going. The series of subfixes to G will indicate the value given to F}, for example the node G (G (k)) will represent
F, (11).

k

Go (k) G, (k) /

Go(Go (k) G,(Go(K)) Go(G1(K)) G (G, (k)Y

Figure 2: PRG to PRF tree

26

This can be proven using the hybrid #;. Values on level i are sampled uniformly, and independently. Values on all
levels > i are computed using G. This has the problem that level i has 2¢ values, but we can resolve this given D runs
in time t =t (n), we need at most ¢ values for the ith level. We reduce to distinguishing G (s1)...G (s¢) from Uas,

27

Part V
Tutorial 2 — 2025-11-05

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

40 Recap

So far, we have discussed perfect secrecy, and demonstrated its requirements, along with methods such as the one
time pad. It came with the significant drawbacks of each key having to be single use, and it needing exceedingly large
keys (at least the length of the plaintext). We went on to discuss a slight reduction of the security provided by this
with indistinguishable encryption (IND), which makes use of pseudo random generators, that take a smaller key, and
output a much larger pseudo random output. This can be used with a one time pad, thus allowing shorter keys, but
each key can still only be used once.

We also defined semantic security, a powerful mathematical definition that should be reviewed in last weeks notes.
We also defined one way functions, which we will not use extensively, but may well return to come the end of the
semester.

41 Pseudorandom Generators (PRGs)

Definition 41.1 (PRG). A PRG is a polynomial time computable function G : {0,1}" — {0, 1}l(") forl(n) > n.

PRGs enable that for every PPT D, there exists V, a negligible function Vn such that

P D (G =1|— P D =1 <V
P @@ =1 P D() =1 <V

Exercise 4. Given a PRG G, such that ¥n € N, s € {0,1}" it holds that G (s) € {O,I}l(n) for some function
1:1(n) > n. Show that there exists a negligible function V (-) such that

1 1
g V(n) < seﬁ)l,‘l}" [G (s) starts with 000] < 3 +V(n)

Solution. We prove by contradiction. Assume there exists a polynomial p () such that for infinitely many n,

1 1
P G tarts with 000] > - + —
s(—{O],rl}" [G (s) starts wi | 5 +)

or

1 1
P tarts with - — —
s<—{01,r1}" [G (s) starts with 000] < 5 o)

Without loss of generality, we will assume that the first inequality is true, for p(-), and infinite ns. We will construct
a distinguisher D, such that
1, if y starts with 000

0, else

D(ye{0,1}") = {

We will note that D is a PPT. Since in a string of length [(n), each bit is sampled randomly from {0,1}, we know
that

. 1
m_{(l)j,f}l(n) [r starts with 000] = B =3

Now, D’s distinguishing advantage between random strings, and the output of G may be calculated as follows: By
the definition of D, and according to the contradicting assumption, for enough values of n € N it holds that:

Un) 1 1 1
P D@ =1 B D) =1 > g
5 L
~p(n)
which contradicts the assumption that G is a PRG. O

We will note that in this proof we used 2 facts that are related to the start of the string beginning with 000:

28

https://github.com/robomarvin1501/notes_intro_to_crypto

1. This may be checked efficiently
1
2. This property has a probability of 3 of occurring, for a string that is chosen from a uniform distribution

Conclusion: Every feature on binary strings that can be efficiently tested exists for the output of a PRG with
approximately the same probability as it exists in a string sampled from the uniform distribution (the difference
between the probabilities is bounded b a negligible function).

Exercise 5. Let there be G1,G2 PRGs. We will define
G (s) =G1(s)[|G2(s)
Where the double line is string joining. Prove or disprove that G is a PRG.

Solution. This is not the case. Consider the case where G; = Ga. In this case, the output of G will not be pseudo-
random, since we can construct a distinguisher that checks if the first half of the string is equal to the second half:
More formally, let there be H = G; = G. Therefore, G (s) = H (s) ||H (s). We can theorise that for all H, G is not
a PRG. Let us construct D (z):

1. Check if the first and second half are the same.
2. If yes, return 1

3. Else, return 0

For G,
PriD(G(s)=1]=1
However,
Pr[D(s)=1] = QLE
As a result, G is not a PRG. O

42 Indistinguishable proofs

Let there be IT = (KeyGen, Enc, Dec), an encryption system. For every algorithm A, and Vn € N, we will define the
experiment IN Dy 4 (n), as follows:

1. k<« KeyGen (1™)

2. A receives 1™ as input, and outputs a pair of messages (mg, m)

3. b+ {0,1}, and we compute ¢* + Ency (my;), and pass ¢* to A

4. A returns b € {0,1}

INDg 4 (n) = 1if ¥ = b. Otherwise, INDp 4 (n) = 0. We will say that II is an indistinguishable encryption
system if for every PPT function A, there exists a negligible function v (-), such that

Pr[INDpa(n)=1] < % +v(n)

for every n € N.

Exercise 6. Let there be I (n) : Vn € N 1(n) > n. Let there be a deterministic PT G, such that for all n € N, and

for all s € {0,1}", it holds that G (s) € {0, l}l(n). We will consider the system I1 = (KeyGen, Enc, Dec), defined as
follows:

1. k + KeyGen (1™)
2. Enci, (m) = c=G((k)dm
3. Decy(¢) = m=c®G (k)
It is given that 11 is IND-secure. Is G necessarily a PRG?

29

Solution. G is necessarily a PRG. Let us assume the contradiction that it is not: There exists a PPT D, and there
exists the polynomial p (-), such that

[D(G(s) =1 -

Pr Pr
s<{0,1}" r«{0,1}}(™

In this case, it will hold that II is not IND-secure. Let us assume that there are infinite values of n, that enable the
above inequality, but without the absolute value:

1
s&ﬁ){'l}" [D (G (S)) - 1] B T%{(l)),f}l(”) [D (T) - 1] ” m

Let us consider the algorithm A that partakes in the experiment IN Dy 4 (n), defined as follows:

1) and my « 01,

1. A generates mg < {0,1}
2. A receives ¢*, for my, and runs D (¢*), and returns 1 if and only if D returns 1
When A returns 0, then it is also true that ¢* = G (k) @ my is distributed evenly over {0, l}l(n). Therefore:

Pr[INDpa(n)=1b=0]=1- D (r)=1]

r
r<{0,1}1(™)
Therefore, when A returns 1, it holds that ¢* = G (k) ® 0'") = G (k), where k < {0,1}". Therefore

Pr(INDp 4 (n)=1b=1]= ngl}n [D(r) =1]

Overall, we get for infinite values of n € N, it holds that

Pr[D (G (PRG)) =1] - % + (1 — Pr[D (random) = 0]) -

|
N~ N~ N
)
=
—
3
SN—

Pr [D(G(s)=1+1- T
s<—{0,1}"[(())] r{0,1}1(™

1

+ I/

1

* P (n)

The final inequalities follows from our initial assumption:

Pr D(G(s))=1] — r
s+{0,1}" (G ()] r«{0,1}}(™)

This is a contradiction to the given that II is IND-secure. Therefore, G is a PRG. If we consider the other direction
for our assumption (because of the absolute value), as in:

1
Pr D(ry=1—- Pr [D(G(s)=1]>——
L (D) =1]= Pr. [P(G)=1] PIE)
Then we may use the same proof, but swapping A to return the opposite of D, i.e., D returns 0, A returns 1. O

Exercise 7. Let there be X = { X, }, oy andY = {Y,,}
indistinguishable.

nen efficiently computable distributions that are computationally

1. Prove that for every PT function f, the distributions f(Y) = {f (Yn)},en and f(X) = {f(Xn)},en are
computationally indistinguishable.
2. Is the theorem in part 1 still true if f is not PT?
Solution. 1. We will assume the contradiction that there exists a PPT function f, for which the distributions f (X)
and f (Y) are distinguishable. Then, there exists a PPT distinguisher A such that for infinitely many n:

Pr [AQ1", f(z)) =1] = Pr [A(1", f(y)) = 1]] > ——

1
T+—Xp y<Yy p(’rl) '

30

Let us define a new distinguisher D (1™, z) = A (17, f (z)). We will note that since A is a PPT, then so too is
D. Therefore, for every n € N it holds that:
Pr [D(1"x)] = Pr [A(1", f(2)) =1]

X, X,

and also
Pr [D(1",y)= Pr [A(1", f(y)) =1]

y—Yn, y«Yy

Therefore, for infinite values of n € N

1
Pr [D(1™x)=1]—- Pr [D(1™",y)=1 —
Pr (D07 =1) - Pr DOy = 1| > o
So D is a PPT algorithm, that distinguishes between X and Y, with non negligible probability for infinite values
of n € N, which is a contradiction to the assumption that these two distributions are indistinguishable.

. It is not. Let there be G, a PRG, such that for every n € N, G : {0,1}" — {0,1}""". We will look at the
following example:

e Vn € N the distribution X,, takes a random s < {0,1}", and returns G (s)

e Vn € N the distribution X,, takes a random r <« {0, 1}”“, and returns r

e Vn € N, given the input y € {0, 1}"“, the function f checks if y is in the image of G (as in, if there exists

s€{0,1}" :y =G (s)). If so, f (y) =1, otherwise f (y) =0

Firstly, we will note that since G is a PRG, it holds that the distributions X = {X, },y, and Y = {Y'} are
indistinguishable. Now, we will show that f(X) and f(Y') are distinguishable. Let there be D, an algorithm
that given input (1", b), where b € {0, 1}, returns the bit b. For every n € N it holds that:

Pr (D" f(x) =1]— Pr [D(l”,f@):m\

X, Yy<—Yy
—| Pr [DA"f(G(s)=1- Pr [D@A", —1
P DOFGE) =1 P DA) = 1)
=[P PO =1- P e Image@] Py D 0) =1 7 € Image(@)

- Pr [r ¢ Image(G)] - Pr [DA™, f(r)=1|r¢ Image(G)]‘

r{0,1}n+1 r«{0,1}n+1
=|1- Pr r € Image (G)] -1 — Pr & Imaae (G- 0
1o P D@ 1= P (g Inage (G0
1 [Image (G)|
o 2n+1
1
> -
-2

31

Part V1
Lecture 4 — 2025-11-19

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

43 Introduction

We are going to discuss Message Authentication Codes, where we verify the authenticity of a sent message. You
receive a message, and can verify that it came from me, and nobody else (Like Eve. Seriously, screw Eve. Or don’t,
that might be what she wants).

We are going to discuss authenticating fixed length messages, and arbitrary length messages. We will do this
through collision resistant hash functions, where we use the “hash and authenticate” paradigm. After this, we will
link it back to encryption.

44 Message authentication

Alice and Bob wish to communicate, and Eve completely controls the channel. We would like to assure the receiver of
a message, that it has not been modified. If Alice sends Bob a message that says “Pay Charlie $10”, Eve can change
it to say “Pay Eve $10,000” (You may also pretend that Bob is your Bank). Encryption ensures data secrecy, that no
one else knows the contents, and authentication ensures the integrity of the data, that it remained unchanged. These
concepts are orthogonal, one does not enable the other.

44.1 Message Authentication Code (MAC)

The syntax is II = (Gen, Mac, Vrfy), where the key-generation algorithm Gen on input 1™ outputs a key k, the tag
generation algorithm Mac takes a key k, and a message m € {0,1}", and outputs a tag t € {0,1}", and the verification
algorithm Vrfy takes a key k, message m, and tag ¢, and outputs a bit b.
The correctness comes from:

Vk,m Vrty, (m, Macy, (m)) =1

The security of MACs is found as follows: The adversary A can adaptively ask for tags of messages of its choice, and
attempts to forge a valid tag on a new message (m*,t*). Let @ be the set of all queries asked by .A. We then have

1, if Vrfy, (m*,t*) =1Am* ¢ Q

MacForgen. (n) = {0 otherwise

Definition 44.1 (MAC scheme). A MAC scheme II = (Gen, Mac, Vrfy) is secure if for every PPT adversary A,
there exists a negligible function v (-) such that

Pr[MacForgemn, 4 (n) =1] < v (n)

This definition does not prevent replay attacks. Eve may send the message “Send Charlie $10” as many times as
she likes, and it will appear legitimate, thanks to the deterministic MAC.
44.2 Fixed length MAC
Let F: {0,1}" x {0,1}" — {0,1}" be a PRF.

 Key generation: Sample k + {0,1}"

o Tag generation: On input k € {0,1}" and m € {0,1}" output t = F} (m)

e Verification: On input k € {0,1}", m € {0,1}", and t € {0,1}", output 1 if t = Fy, (m), and 0 otherwise
Theorem 15. If F' is a PRF, then the above MAC scheme is secure

Proof . The concept is that given a forger A, for the MAC scheme, we construct a distinguisher D for the PRF. D
has oracle access to a function O, which is either Fj, or a truly random h. Additionally, D runs A internally, and
simulates the experiment MacForgemn, 4 to A using O.

Let us assume towards a contradiction that there exists a PPT adversary A, and a polynomial p (n) such that

1

Pr|[MacForge n)=1> —-
[gH,A()]—p(n)

32

https://github.com/robomarvin1501/notes_intro_to_crypto

for infinitely many ns. The distinguisher D® will invoke A, and respond to each of its queries m with t = O (m). It
will output 1 if and only if m* ¢ Q, and t* = O (m*), where Q is the set of all queries asked by A. There are 2
(éazzz 1: If O = F}, is a PRF, then A’s view is identical to MacForger, 4 (n), and so

Pr [DF"'(') (1) = 1} = Pr[MacForger, 4 (n) = 1]
Case 2: If O = h is a truly random function, then if m* ¢ Q, then A’s view is independent of O (m*), and so

Pr [Dh(') (1) = 1] — 9

From here, we may calculate

Pr {DFk(') (1") = 1} — Pr [Dh(') 1" = 1” (10)
= ‘Pr [MacForgem,a(n) =1] — 2_"’ (11)
1
pp——— 12
~p(n) 12)
(13)
So, we have successfully distinguished between a truly random function, and a PRF, which is a contradiction. O

44.3 Arbitrary length messages

Given R o
II= (Gen,Mac, Vrfy)

for fixed length messages, we want to define Il = (Gen, Mac, Vrfy) for arbitrary length messages. Here is a first (naive)
attempt:

44.3.1 Attempt 1

Let Macg (m) = (t1,...,tq) where t; = Macy, (m;), Gen = Gen, and Vrty, ((mq,...,mq), (t1,...,tq)) = 1 if and
only if \7r?yk (my,t;) = 1 for every i € [d].
This is completely insecure. Consider
t=(t1,t2)

If t is a valid tag for m = (mq,ms), then it also holds that t* = ¢; is a valid tag for m* = m;.

44.3.2 Attempt 2

Macy (m) = (t1,...,tq), where t; = Macy, (d,m;), Gen = Gen, and Vrty, ((ma,...,mq), (t1,...,tq)) = 1 if and only
if \TrFyk ((d,m;) ,t;) = 1 for every i € [d].

This is also insecure. Consider if ¢ = (t1,t2) is a valid tag for m = (mq,ms), then t* = (t2,%1) is a valid tag for
m* = (mg, mq).

44.3.3 Attempt 3

Macy (m) = (t1,...,tq), where t; = Macy, (dyi,m;), Gen = Gen, and Vrty, ((ma,...,maq), (t1,...,tq)) = 1 if and
only if \ﬁ?yk ((d,i,m;),t;) =1 for every ¢ € [d].

This is still insecure. If t = (¢1,t2) is a valid tag for m = (my, ms), and similarly ¢’ = (¢},t}) is a valid tag for
m' = (m], m}), then t* = (t1,t}) is a valid tag for m* = (mq,m})

44.3.4 Solution 1

Macy, (m) = (r,t1,...,tq), where t; = 1\7I;ck (r,d,i,m;), and r is sampled uniformly, and independently for each
message m. Gen = Gen, and Vrty, ((mq,...,mq), (r,t1,...,t7)) = 1 if and only if \7r?yk ((r,d,i,m;),t;) = 1 for
every i € [d].

This is a solution, but has the drawback of very long tags.

33

44.3.5 Solution 2 (CBC-MAC)
Let Macy (m) = tq, where
o to=0", and t; = F, (t;—1 ® m;) for i € [d]
e Fj can be any PRF
e d must be fixed ahead of time
In short, we take the result of the signature of the first block mi, and XOR it with the second block ms, and then

compute the signature of that. This is continued on recursively until the end:

mq

m, mgy
s,
F, F I F

k k

Figure 3: CBC-MAC

This is great because it is very easy to implement, so that solves many bug issues, and lots of the parts may be
implemented in hardware.

44.3.6 Solution 3 - Hash and Authenticate

We will compress m into a short fingerprint H (m), and then authenticate H (m) instead of m itself. It is critical for
our hashing function H, that it is very difficult to find m # m’ such that H (m) = H (m/).

45 Collision-Resistant Hash Functions

The purpose of Collision-Resistant Hash Functions is that they compress arbitrarily long inputs into short, fixed-length
outputs. It should be very hard to find # 2’ such that H (z) = H (2').
Syntactically: ® = (Gen, H):

e The key generation algorithm Gen, on input 1™ outputs a key s
« The evaluation algorithm H on input s, and = € {0,1}" outputs H, (z) € {0,1}'™

So, our adversary is playing

1, if H,(z) = H, (x/)/\x#x/
HashCollg 4 (n) = {0 otherwise

Bringing us to the definition

Definition 45.1 (Collision Resistant). ® is collision resistant if for every PPT adversary A there exists a negligible
function v () such that
Pr[HashCollg 4 (n) =1] <wv(n)

Can we find collisions? Well, if our function produces output of length n bits, then we could 2™ + 1 inputs, but
this will take forever. Instead, we have The Birthday Attack.

Given H : {0,1}" — {0, 1}l, sample ¢ = O (25) inputs uniformly and independently. This finds colliding pair of

inputs with a constant probability (2! pairs). To think about this in general, given output of 27, then similar to the
birthday paradox from probability and statistics, taking v/2" = 2% possible inputs, and testing them, will give us a
shared output with probability of 50%.

In practice I > 128. Popular heuristic (unkeyed) functions include MD5, SHA1, SHA3, and so on. Both MD5, and
SHA1 are horrifically insecure, but still heavily used. They can still be useful in non crypto contexts, but should now
never be used in a crypto context.

Generally, in order to to create an arbitrary length hash function, we start with a fixed length has function, and
extend it.

34

46 Authenticating Arbitrary-Length Messages

Given

fi = (Gon, Ve, V7

for fixed length messages, and a collision resistant hash function ® = (Geng, H), define Il = (Gen, Mac, Vrfy) for
arbitrary length messages.
Reconsider Solution 3 above:

o Macys (m) = Macy, (Hs (m))
e Gen = (56\71, GenH>
o Vify, , (m,t) =1 Vrfy, (Hy (m),t) =1

Exercise 8. Let Macy, (m) sample s < Geng (1), and outputs (5, Macy, (Hs (m))) Is this secure?

Solution. This is insecure. In general, our family our functions should overall be difficult to find collisions within, but
it is possible that there exists a function within the family where it is incredibly easy to find within it collisions. Since
s is generated, our adversary can choose an s for which the function Hy has many collisions. Consider the following:

o The adversary requests the signature of 0, and gets in response (s, Macy, (Hs (0))). Let us denote a = Hy (0).
o We will now find a function within the family that maps everything to a.

e The adversary will now pick this value for s, and the signature of every message m will be

Macy, (Hs (m)) = Macg, (a) = Macy, (Hs (0))

Let us return to Solution 3.
Theorem 16. Ifﬁ 18 a secure MAC, and ® is collision resistant, then I is a secure MAC.

Proof . Consider the event “collision”. A asks for a tag on some m; such that m; # m*, and Hy (m;) = H)s (m*).
Whenever “collision” occurs, then we can use A to find a non trivial collision, and whenever “collision” does not occur
(and A wins), then we can use A to forge a tag on the fixed length message

Hg(m") & {Hs(ma),..., Hs(mg)}
Let A be any PPT adversary, then

Pr[MacForger, 4 (n) = 1] < Pr [collision] + Pr [MacForger, 4 (n) A collision

Since
Pr[A] =Pr[AAB]+Pr[AAB] <Pr[B]+Pr[AAB]

Let claim I be that there exists a negligible function v (n) such that
Pr [collision] < v (n)
and claim IT be that there exists a negligible function vy (n) such that
Pr [MacForger, 4 (n) A collision] < v (n)

Proof of Claim I:
Let us assume towards a contradiction that there exists a PPT adversary A, and a polynomial p (n) such that

1
Pr [collision] > ——
p(n)

35

k + Gen (17)
(MACy, (H, (m;)))

A (1)

(m*,t*) (m, m*)

The collision finder C will
« On input s, sample k + Gen (1™), and invoke A
o Respond to A’s queries, using (k, s)
o If 3m € {my,...,m1} such that m # m*, and Hy (m) = H, (m*), then it will output (m,m*)
e Otherwise it will output L

Proof of Claim II:
Let us assume towards contradiction that there exists a PPT adversary 4, and a polynomial p (n), such that

—_— 1
Pr [MacForgeg 4 (n) =1 A collision| > ——
p(n)

for infinitely many ns. The forger A will
o Sample s + Geng (1™), and invoke A

o Respond to A’s queries m; by forwarding H, (m;) to the oracle]\/Ja\ck (+), and then forwarding back its response

to A
o Output (Hs (m™*),t*)

So
Pr [MacForgeﬁj (n) = 1} = Pr [MacForgen 4 (n) = 1 A collision]
> b
~p(n)
Which is a contradiction. O

47 Returning to encryption
Recall that CPA-secure encryptions may be built from any PRF, and hold that
Ency (m;r) = (r, F, (1) @ m)

This has a rather serious problem. An adversary can change the contents of a message, without the recipient knowing.
The adversary will also not know how he has changed it, but he can change it, and none will know that this has
happened.

Ency,(mae1™;r)=(r,Fr(r)®@me1™)

So, we want to achieve both encryption, and authenticated messages, creating authenticated encryption.
Let us consider

k= (kg,kn) (14)
¢ < Encg,, (m) (15)
t + Macy,, (m,t) (16)

36

Which can then all be reversed

k= (kg k) (17)
m < Decg, (¢) (18)
? < Macy,, (m,t) (19)

This may well be insecure. We have no guarantees that our MAC system does not leak information about the message.
In fact, we may completely leak m, since we have no security guarantees.
This may be improved to

k= (kg,km) (20)
¢+ Encg,, (m) (21)
t + Macy,, (c,t) (22)
Which can then all be reversed
k= (ke,kn) (23)
m < Decy, (¢) (24)
? < Macy,, (c,t) (25)

If the encryption is CPA-secure, and the MAC is secure, then this construction is a CPA-secure encryption scheme,
with a secure MAC.

47.1 Chosen Ciphertext Attack CCA

This has brought us to chosen ciphertext attack schemes. Here, A can adaptively ask for encryptions of messages of
its choice, and for decryptions of ciphertexts of its choice (aside from the challenge ciphertext ¢*).

Definition 47.1 (CCA-IND). II has indistinguishable encryptions under a chosen-ciphertext attack if for every PPT
adversary A there exists a negligible function v (-) such that

Pr [IND%&A (n)=1] <= +v(n)

In this case, we may also say that 11 is CCA-secure.

We will observe that CCA-security implies authenticity. Given Encg (m), it is hard to generate Ency (m') for a
“related” m’ (such as m’ = m+1). This is because if he could, then he could take ¢*, and flip the bits. This is (under
the assumption) a legal encryption, which could then be decrypted into the inverse bits of my, so he could then take
the decryption of the inverse of ¢*, flip its bits, and identify which m; was returned encrypted to c*.

We will note that it feels a little unrealistic. Honest parties do not typically decrypt arbitrary adversarially chosen
ciphertexts. Nevertheless, adversaries may be able to influence what gets encrypted / decrypted, and learn some
partial information. For example, in WWII, the US cryptanalysts might have tried to send encrypted messages to the
Japanese, and then monitor their behaviour. An adversary may send certain ciphertexts on behalf of a user to the
user’s bank, and then the bank will decrypt these ciphertexts and its response will leak information to the adversary.
Furthermore, an encryption scheme might be used as part of an authentication protocol where one party sends a
ciphertext to the other, who then decrypts it and returns the result. Thus we can see, that CCA is a realistic security
requirement in the real world.

We will thus note that CPA security does not imply CCA security, since we can affect the output of encryption
function, and get another valid encryption:

Ency, (m;r) = (r, F, (1) @ m)
Ency(mae1™r)=(r,Fr(r)y®@me1™)
47.1.1 CCA-Secure encryption scheme

The main idea here is that adversaries should not be able to generate new “valid” ciphertexts, and that the decryption
oracle becomes useless. Our solution is called Encrypt-then-Authenticate:

Let I = (KeyGeng, Enc, Dec) be a CPA secure encryption scheme, and let IIy; = (KeyGenys, Enc, Dec) be a
secure MAC. Let us define I’ = (KeyGen', Enc’, Dec’) as

o KeyGen' (1™) output k = (kg, kar) where kg < Geng (1) and ky + KeyGenpy (17)
o Enc, (m) output (c,t) where ¢ < Ency, (m) and t < Macy,, (c)

o Dec) (c,t) If Vrfyg,, (c,t) =1 then output Decy,, (c), otherwise output L

37

Theorem 17. Let us assume that g is a CPA-secure encryption scheme, and that Iy is a secure MAC with unique
tags, then II' is a CCA secure encryption scheme.

Proof . We will first note that MAC with unique tags means that for any key kj; and message m, there exists ezactly
one t such that Vrfyg,, (m,t) = 1. Any MAC scheme with a deterministic Mac algorithm can be modified to have
unique tags by using “canonical verification” instead of its own Vrfy algorithm: On input (kps,m,t) output 1 if and
only if t = Macy,, (m) and 0 otherwise

Proof idea:
We will call (c,t) valid wr.t (kg,kar) if Vrfyg, (c,t) = 1, and invalid otherwise. Consider the event Valid-
Query. A queries the decryption oracle with a valid ciphertext, that was not produced by the encryption oracle.
If Pr[ValidQuery] is non-negligible, then we can use A to break the MAC II,,. If it is negligible, then we can use A
to break the CPA security of Ilg

Let A be a PPT adversary, then:

Pr [INDG 4 (n) = 1] (26)
< Pr [ValidQuery] + Pr [INDggf (n) =1 A ValidQuery (27)
Theorem 18 (Claim II). Claim II: There exists a negligible v (n) such that

_ 1
Pr [IND%%Z‘ (n) =1 A ValidQuery| < 3 +v(n)

Proof . We will assume towards contradiction that there exists a polynomial p (n), such that for infinitely many ns

1 1
Pr [IND{4 (n) = 1 A ValidQuery] > 3 o)

We will construct an adversary B such that for infinitely many ns

1 1
Pr [IND{%% (n) = 1 A ValidQuery] > - + ——
[HE,B() Q Y =3 p(n)
B will sample kjs, and invoke A, and respond to its queries. It will then output the same (mg, m1), and b'.
It will query the oracle Ency,, () to obtain a ciphertext ¢, compute t + Macy,, (¢), and return (¢, t).
For the decryption query, if (¢,t) was a response to a previous query m, then return m, and otherwise return L.
Since ValidQuery does not occur, then B does not need a decryption oracle for simulating A’s view. Thus:

Pr[INDGP (n) = 1] (28)
> Pr [IND%}I;’% (n) A ValidQuery (29)
=Pr [INDgf;ﬁ (n) A ValidQuery (30)
1,1 (31)
2 p(n)

O

Theorem 19 (Claim I). Claim I: There exists a negligible v (n) such that Pr [ValidQuery] < v (n)

1
Proof . Let us assume towards contradiction that there exists a polynomial p (n) such that Pr[ValidQuery] > —(]
p(n

for infinitely many n’s. Let ¢ (n) be a polynomial upper bound on the number of decryption queries made by A. We

will construct a PPT adversary B such that Pr[MacForgen,, s = 1] > for infinitely many ns

pn)-qgn
We will construct B as follows: Sample kg,b and i + {1,...,q}, inv(ok)e AE :3nd respond to its queries. For an
encryption query m, we will compute ¢ < Ency, (m), and query the oracle Macy,, (-) with ¢ to obtain the tag ¢.
Finally, return (c,t).
For the first ¢ — 1 decryption queries (¢, t), if (¢,t) was a response to a previous encryption query m, then return m,
and otherwise L. For the ith decryption query (c,t), output (c*,t*) = (¢, t) as the (potential) forgery.
We will observe that ValidQuery occurs, and that B guesses the index i of the first valid decryption query that
was not obtained from a previous encryption query. Therefore, Vr fyy,, (¢*,t*) = 1 and B did not query Macg,, (+)
on c*. So, we may conclude

Pr[MacForgen,, p = 1] > Pr [ValidQuery A B guesses i
_ Pr[ValidQuery]
q(n)

p(n)-q(n)

38

48 Crypto primitives so far

So far, we have seen PRFs, PRGs, built PRGs from PRFs. From PRGs we have create IND-secure symmetric key
encryption, and built CPA-secure symmetric key encryption from PRFs. Furthermore, we built IND-secure from
CPA-secure. PRFs were also used to create MACs for fixed length messages, we then combined fixed length MAC
and CPA-secure to make CCA secure symmetric key encryption. Finally, from MAC for fixed length messages, and
Collision Resistant Hash Function, we made MAC for arbitrary length messages.

This concludes this section of the course, covering symmetric encryption.

39

Part VII
Tutorial 3 — 2025-11-19

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

49 Reminder

We began with One Time Pads (OTPs), that enable perfect secrecy, but have the problems of single use keys, and
exceedingly long keys. We then moved on to Indistinguishable Encryptions, and PRGSs, which enabled smaller keys.
We then continued on to create a scheme, using Pseudo Random Functions that was resistant to Chosen Plaintext
Attacks, and showed that PRGs are equivalent to PRFs.

Exercise 9. Given II; = (KeyGeny, Ency, Decy), and Iy = (KeyGena, Ency, Decs), one of I11, Iy is IND. Create a
scheme 11 that is IND.

Solution. II will be as follows:
o KeyGen (1™): The key will be constructed of 2 parts: (ki, kz2), where for i € {1,2} k; comes from KeyGen;
e Enc(k,m): Enck, (Enck, (m))
e Dec(k,c): Decy, (Decy, (¢))

The correctness of the scheme is obvious from the construction, since both the base schemes are correct. We must
now prove that it is IND-secure:

Let us assume towards contradiction that the scheme is not IND-secure, so there exists an polynomial adversary
A that can win the IND game against II. There are 2 cases:

Case 1: II; is IND-secure, and II5 is not. We will thus build the adversary B that breaks II; as follows:
1. Tt does this by generating mg,m, from A

2. ko < KeyGengy (17)

3. Get ¢ = Ency, (mp)

4. Compute Ency, (c), and send it to A

5. A returns o', which B then returns

Case 2: Il is IND-secure, and II; is not. We will build B that breaks IIs as follows:

1. Generate mg, m; from A

2. k1 + KeyGeny

3. Create po,p1 via Encg, (m;)

4. Send these for encryption by Ency,, and then send those to A, which can by assumption differentiate them.

In both cases, we have built an adversary that can break the IND-secure scheme, which is a contradiction, and so
we can conclude that IT is IND-secure. O

Exercise 10. Let there be a PRF Fy, Gy : {0,1}" — {0,1}", which means that

VPPT D :

Pr {DF’*‘(') = 1} - Pr [DT(') = IH < neg (n)

k«{0,1}™ r<Funcs,_n

In short, we cannot distinguish between the output of a PRF, and a truly random function.
Prove / Disprove

VPPT D :

Pr [DF’“(') = 1} —Pr [DG’“(') = 1} ‘ < neg(n)

Or in Spanish, para cada PPT D, no podemos distinguir entre la salida de dos PRF.
Finally, in English, sbe rirel CCG Q, jr pnaabg qufgvathufu orgjrra gur bhgchg bs gjb CESY.

40

https://github.com/robomarvin1501/notes_intro_to_crypto

Solution. We shall prove this as follows:

VD : |[Pr[D"s =1] - Pr[D =1]| < Pr[D% =1] - Pr [D"=1]

Pr[Df =1~ Pr D" =1]+

r<«—Funcs r<—Funcs
< neg + neg
= neg
As required (since adding together 2 negligible functions is still negligible). O

Exercise 11. Given two functions Fy,, Gy, : {0,1}" — {0,1}", where one of them is a PRF, prove or disprove that
Hy, k., is a PRF, where

’

Hp, k, (v) = G, (Fi, (2))

Solution. This is not the case. There are 2 cases:
Case 1: G is a PRF, and F is not. We may then set F () = 0. As a result
Hkl-,k'Q = le (0)

Which is a constant output, and as a result, Hy, r, is definitely not a PRF.
Case 2: Here F' is a PRF, and G is not. Let us set G (z) = 0:

Hy, g, = Gy (Fi, () =0

Which is trivially not pseudorandom. O
Exercise 12. Let there be a PRF F. We will create
Hy () = Fpy(0) (@) [Fx (z)
Prove or disprove that H is a PRF.
Solution. H is not a PRF. Let there be an oracle z +- {H,r}, and we will construct the distinguisher D*(") as follows:
1. 2(0) =L
2. Compute FT, (8)
3. 2(8)

If z = Hy then 2 (8) = Fp,(0) (8) [| Fx (8). Note that Fp, (o) (8) = FL (8). Therefore, we can distinguish between this,
and the output of a random function, where this would simply be random noise. O

Exercise 13. Given
Wk17k2 (I) = FFkl (0)||Fk2 (.CE)

Where F is a PRF. Is W a PRF?

Solution. Let us begin by proving the following 2 theorems:
Theorem 20. Hy () = Fp, (o) is a PRF

Proof . We will begin with the distinguisher

Pr [DFFMO)(')} —Pr [DF7-<0>(‘> - 1} ‘ - ‘Pr [DF7'<0>(') - 1} —Pr [D’“(') - 1”

Pr [DFFk<o><'> - 1} —Pr {D“') = 1” <

< neg

Theorem 21. Gy, i, () = Ly, (z) || Fk, (z) is a« PRF, where L, F are PRFs.

Proof . We want to show that Ly, (z) ||Fk, (z) is a PRF, or indistinguishable from concatenating two parts of random
noise r () || (). We may do this with a hybrid proof, by showing that Ly, ||r (-) is indistinguishable from the PRF,
and then that it is also indistinguishable from r (-) ||r (+). O

O

41

Part VIII
Tutorial 4 — 2025-12-03

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

50 Question 1

Let there be a family of collision resistant hash functions {H}¢ (g 13-, such that Hy : {0, 1}*" — {0,1}". Build a

new family of CRHFs {H} ., 1y~ such that H : {0, 100" such that 1> 3.
A hash function is collision resistant if

VPPT A Pr[A(Hs) — x1,22 : Hs(x1) = Hg (22)] < neg (n)

50.1 Solution

To achieve this we will split the input into inputs of size 2n, such that
H! (z) = H. (z122...11)

We may now input z1||z2 into Hs: H, (z1||z2) = y1, we now compute H, (y1||x3) = y2, and so on. The output will be
the resultant hash.
Why is this CR? Let us begin with [= 3, which will extend to arbitrary length [. We will assume towards

contradiction that there exists a collision, so therefore there exists an adversary A which can output [;,] where

H! (z) = H[(/). We will use this to construct an algorithm to find the collision. Let there be the algorithm B as
follows:

1. Run A, which returns [;E,] = [ml T2 w?’}

Thowh wy
2. If Hy (x1]|z2) = Hg (x1]|z2), then it returns that pair, and we are done. If not, then it must hold that

H, (H (1|72) [|2a) = He (Hs (24 [|25) [|25)

50.2 Solution II

An alternative is to instead build a tree, where we pad the input into the nearest power of 2, split it into blocks of
size n, and then run Hy on each pair of blocks. We then continue doing this recursively until we reach a single hash
of length n. This may be proven similarly as to the previous solution.

How does this compare to the previous? The first solution only needs O (1) of memory, where the second requires
O (log (n)) of memory. However, a benefit of the second method is that we can split it trivially across many processing
cores, where for the first solution each step is dependent on the previous, and so it cannot be split so easily.
An additional benefit of the first solution is that it is incredibly easy to implement, whereas the second is a bit more
complicated. However, an additional benefit of this second method is as follows. If we consider this has to be a hash
of your entire hard disk, then when we change a block, we do not need to recompute every hash further up the chain
from this block, but rather only the hashes in the tree that are impacted by this singular block.

51 Question 2

Let there be a PRF Fy, : {0,1}°" — {0,1}*". Let II = (KeyGen, MAC, Vrfy).
o KeyGen (1") — k for PRF
o MAC (b, m) = P ooy (m]}0%) | Fe (m]17) = 1
o Vrfy(k,m,t)=1if and only if MAC (k,m) =1

Is this a secure MAC algorithm?

42

https://github.com/robomarvin1501/notes_intro_to_crypto

51.1 Solution

It is so. Let us assume towards contradiction that there exists A that can win the MacForge game against II. We
want to build B that can win the PRF game. So, B has an oracle B®. Remember, the MacForge game is that A has
oracle access to MAC, and it spits out (m*,t*) such that it has not asked the Mac of m*, and its hash is U*.

Let us define the new function Fpg2ny (m[|0™) [|O (m][17).

1. A asks questions, and we use this function to ask them
2. Return Vrfy (m*, t*)

Case I: If O is random, then there is no way that A4 can guess the output, which is at least partially dependent on
1
O, so therefore Pr[Vrfy =1] < on

Case II: Here O is a PRF, then A is playing the regular MAC game, and so can guess the output, and we will
return that this is a PRF.

51.2 Extension

Given a family of PRF functions F, : {0, 1}2n —{0,1}". Is F, CRH?
No it is not. We will build a family F| lé,a,b such that it is still pseudorandom, but since we know k, we can show
that it is not a CRH.

0, ifr=a
Frap =10, if 2 =b
Fy (x), else

We will theorise firstly that this family is pseudorandom. Since it is highly unlikely that our adversary will find a or
b, we may state that F’ is a PRF.

Secondly, we will theorise that F’ is not collision resistant. This follows obviously. PRFs are only PRFs if we do

not have access to the key in Fj. Since for CRFs we are given the key, we may trivially bring a, b which are a collision,
and so disprove the fact that F’ is collision resistant.

43

Part IX
Lecture 5 - Number Theory and Hardness
Assumptions — 2025-12-10

Notice: If you find any mistakes, please open an issue at https://github. com/robomarvini501/notes_intro_to_crypto

52 Number theory

Practical private key cryptography can be based on block ciphers, and hash functions. However, public key cryptogra-
phy requires more structure. Public key cryptography is when instead of 2 people having 1 shared key between them,
they both publish a public key that everyone can see, and each keep secret their own personal private key. Encryptions
made with the public key can only be decrypted by the private key, and the inverse is also true. This obviously sounds
wonderful, I can verify that a message comes from me by signing it with my private key, and ensure only one person
can read it by encrypting with their public key, but to do this, we need to find a way to share around the public
keys, in a trusted format. Also, public key encryption is hard. What do we mean by hard? Efficiency is measured
asymptotically in terms of the input length.

input length = O (log (input))

So, we can classify problems as “easy” or “hard”, based off the input length.

52.1 GCD

For any a,b € Z>¢, there are unique ¢, € Z>o with a = gb+r Ar < b. The greatest common divisor (or GCD) is the
largest ¢ € Z>¢ such that ¢ |aAc| b:
ged(a,b)=c€Zsp:clanc|b

We can express ged (a,b) as aX 4+ bY for X, Y € Z, and it is the smallest positive integer that can be expressed
this way. The Euclidean algorithm computes ged (a,bd) in polynomial time. The extended Euclidean algorithm will
compute ged (a,b), X,Y in polynomial time.

Theorem 22. If c| ab and ged (c,a) =1 then ¢ | b. In particular, if p is prime, and p | ab thenp|aV p|b.

Proof . Since c | ab, let us write ab = ck for some k € Z. From ged (¢,a) = 1, then there exist z,y € Z such that
cx + ay = 1. We may multiply cz 4+ ay = 1 by b, and receive

bex + bay = b

Let us substitute ab = ck into bay:
b=c(xb+ ky)

Since xb + ky € Z, we know that ¢ | b O
Theorem 23. p | NAq| N Aged(p,q) =1 = pg| N

Proof . Since p | N let us write N = pk;. Similarly for ¢ we may write N = gko. From ged (p,) = 1, then there exist
x,y € Z such that pz 4+ qy = 1. By the previously proven claim,

plakaNged(p.q) =1 = p|ke
Let ko = pks, and let us substitute kky = pks into N = gks, so
N = q(pks) = paks

Hence, pg | N O

52.2 Modular arithmetic
Let a,b, N € Z such that N > 1.

Definition 52.1 (Modular arithmetic). a =b mod N if N | (a —b). [a mod N] is the unique ¢’ € {0,...,N —1}
such that a =a’ mod N

Example 1. How do we compute [1093028 - 190301 mod 100]?

44

https://github.com/robomarvin1501/notes_intro_to_crypto

Solution.

1093028 - 190301 = [1093028 mod 100] - [190301 mod 100] mod 100
=28-1 mod 100

=28
O
We cannot always divide modulo N:
3-2=6=15-2 mod 24
but 3 # 15 mod 24
Definition 52.2 (Invertible modulo). b is invertible modulo N if there exists b=1 such that b-b~! =1 mod N

ab=cb mod N (32)
ab-b"'=cb-b"' mod N (33)
a=c¢ mod N (34)

Theorem 24. b is invertible modulo N if and only if ged (b,N) =1

Proof . Forward: If b is invertible modulo IV, then bx =1 mod N for some x. This implies bx — 1 = kN for some k,
or bx — kN = 1. By Bézout’s identity, ged (b, N) = 1.

Reverse: If ged (b, N) = 1, then by Bézout’s identity, there exist x, k € Z such that bx + kN = 1. Rearranging gives
bx =1 mod N, so b is invertible modulo N. O

The above theorem implies that there are polynomial time algorithms for addition, subtraction, multiplication,
inverse computation, and exponentiation modulo N.

So given b, N such that ged (b, N) = 1, then to find b~! we can use the extended Euclidean algorithm on b, N, and
take X, k such that X + kN = 1. So therefore, X mod N is the inverse of b.

52.3 Groups

Definition 52.3 (Group). A group is a set G along with a binary operation ® such that
e Closure: Yg,h e G goOhe G
o FExistence of an identity: There exists Vg € G lg € G: g0 1lg=1g®g=yg

l=gtog=1g

 Ezistence of an inverse: Vg € G g7t € G :g® g~
o Associativity: ¥g1,92,93 € G (91 © g2) © g3 = g1 © (g2 © g3)
o |G| is the order of (G, ®)

o (G,) is finite if |G] is finite

e (G,®) is commutative (abelian) if Vg,h € G gOh=h0®g

e (H,®) is a subgroup of (G, ®) if (H,®) is a group, and H C G

52.3.1 Examples

(Z,+) is a commutative group, but (Z, x) is not a group (there is no inverse).
(R, x) is not a group, but (R\ {0}, x) is a commutative group.
(Zn,+ mod N) is a commutative group, where Zy = {0,...,N — 1}

Theorem 25. Let G be a group, and a,b,c € G. Then ac = be if and only if a=10

45

52.3.2 Group exponentiation
Definition 52.4. For g € G and m € N we let
g =(gH)"
. @ =1g
Theorem 26. o g™ (O gMm2 = gtz
o If G is commutative, then g™ ® h™ = (g ® h)"™

m

e g™ can be computed using a polynomial number of group operations

Theorem 27. Let G be a group of finite order m. Then Vg € G g™ =1
Proof for commutative groups.
Mo Ohy=(g0M)O- O (gOhn) =¢"O (OO hp) (35)

Note that hy,...,h,, are all the elements of the finite group. If we for example consider G = ({1,2,3,4} ,+), then
take g = 2, then we can see that this holds:

1020304=0201)0(202)0((203)0 (204)
=@2oM@o)o @)
=20401063
—1020304

As we can see, this only holds if commutativity holds. O
Theorem 28. Let G be a group of finite order m. Then ¢g* = gl ™4™ for any ge GAieZ

Proof . Let i = gm + r where r =i mod m. Then

g =" g =19 =g (36)
O
Theorem 29. Let G be a finite group of order m > 1, and let e > 0 be an integer such that ged (e,m) = 1. Then, the
function f. : G — G defined as f.(g) = g° is a permutation. Moreover, its inverse is fq where d = ¢! mod m
Proof .
Vg € G fa(fe(g)) = g° = glt ™M =gl =g (37)
O
52.3.3 Z star N
Let us consider the group Zj;:
Zny ={0,...,N —1} (38)
Zy ={a€e{l,...,N—1} : gcd(a,N) =1} (39)

i.e., all the numbers less than NV that are invertible mod N.
Theorem 30. Let N > 1 be an integer, then

o 7Yy 15 a commutative group under multiplication modulo N

o If N = Hp? where the p;s are distinct primes, and e; > 1 then

Zx| = T1pi " (i = 1)

This is Euler’s totient function, named ¢ (N)
Note:

46

52.4 Hard problems

An easy problem may be solved in polynomial time, with respect to the length of the input. For a hard problem, we
do not know of a polynomial time solution. There may be one that we know not, but we know not of one.

So far we discussed “easy” number theoretic problems, such as addition, subtraction, multiplication, inverse com-
putation, and exponentiation modulo N. Some problems are conjectured to be “hard”. Multiplication is “easy”,
given z,y it is easy to compute z -y. However, factoring seems “hard”: Given z -y, it does not seem trivial to compute
z and y.

It should be note that factoring is not always hard:

o Half of the time a random number is even
e A third of the time it is divisible by 3

o The hardest numbers to factor seem to be those that are the products of two equal length primes (important,
this will be incredibly relevant later, in things like RSA)

53 Factoring and RSA assumptions

53.1 Factoring assumption

Let GenModulus be a PPT algorithm that on input 1" outputs (IV, p, q) where N = pq, and p and ¢ are n bit primes.
The Factoring Assumption is that for every PPT algorithm A, there exists a negligible function v () such that

PriA(N) = (p,q)] < v (n)
Where (N, p, q) < GenModulus (1™).

The factoring assumption implies that the following is a one way function:
f(z) = compute (N,p,q) + GenModulus (1™;z) and output N

Here, x is used as the random tape.
We will not directly rely on the factoring assumption, and instead the seemingly stronger RSA assumption.

53.2 RSA assumption

Let N = pq for primes p,q. Let e > 0 be an integer such that ged (e, (N)) = 1. Recall that when we raise to the eth
power,

o fe(z)=2° mod N is a permutation over Z%, = {a € {1,...,N — 1} : ged (a, N) = 1}
e fo(x) =2° mod N can be computed in polynomial time given e and N

To compute the eth root,
e Let d=e"! mod ¢(N) then f;(x) = 2% mod N is the inverse of f,

Let GenRSA be a PPT algorithm that on input 1™ outputs (N, e, d) where N = ppq, and p and g are n bit primes,
ged (e, ¢ (N) =1), and d = €®! mod ¢ (N):
The RSA Assumption: For every PPT algorithm A there exists a negligible function ¢ (-) such that

Pr[A(N,e,z® mod N)=1z] <wv(n)

Where (N, e,d) < GenRSA (1") and = < Z%. A possible implementation would be to generate uniform n bit primes
p and ¢, and set N = pg. Then we choose an arbitrary e such that ged (e, ¢ (N)) = 1 (e.g, e = 3, or 26 +1 for efficient
exponentiation).

Definition 53.1 (Group isomorphism). Two groups G,H are isomorphic (denoted G = H) if there exists a one to
one function f: G — H such that Vgy, 92 € G it holds that

f91©92) = f(g1) © f(92)

G = H means that they are essentially the same group (up to the efficiency of computing f, f=1)

Definition 53.2 (Cross product). G x H is the group of ordered pairs (g,h) € G x H with respect to the group
operation (g,h) ©c,u (9, h') = (9 ©c ', h On ')

47

53.2.1 Chinese Remainder Theorem
The (simplified) CRT: Let N = pq, with ged (p,q) = 1. Then
IN 27y X Ly NLy = Loy X Ly,

where in both cases, the isomorphism f is given by f (z) = ([x mod p], [z mod ¢]).
For z € {0,...,N — 1}, we define z, = [+ mod p], and z, = [z mod q].
An example: 15 =5 - 3:

Zr ={1,2,4,7,8,11,13,14} = Z x Z; 40)
1-(1,1) (41)
2 (2,2) (42)
4 (4,1) (43)
7 (2,1) (44)
8 — (3,2) (45)
11— (1,2) (46)
13 — (3,1) (47)
14 — (4,2) (48)

If G = M, and both f and f~' can be computed efficiently, then we can use H to speed up computations in G:

90106 = 71 (f (91) ©Om f (92))

So, returning to the above example with Z7;, what if we want to compute 14 - 13 mod 157 Well,

[14-13 mod 15] L5 (4,2) - (3,1)
(4-3 mod 5],[2,-1 mod 3])
= (2,2)

-1
f—>2

So, for N = pq, computing f (z) = (z,,x,) is easy. So all we need to do is compute f~':
ftxp,zy) =[2p- 1, + 241, mod N] (49)
Where Ap 4+ Bg =1 and
1, =[Bg mod N]1,=[Ap mod N] (50)

Which is not hard, since there are so many possible solutions.

53.3 Cyclic groups
Definition 53.3 (Cyclic group). Let G be a finite group of order m, and let g € G. Then
e (9)=1{9" 9" 9% ..}
e The order ord(g) of g is the smallest positive integer i with g' = 1
Theorem 31. e (g) is a subgroup of G (Called the subgroup generated by g)
. (g) = {90,917._.,907"(1(_(])—1}
o ¢* =¢Y if and only if x =y mod ord(g)
o ord(g) | m where m = |G|
Theorem 32. If G is a group of prime order p, then G is cyclic. Moreover, each element g € G\ {1} is a generator
(i.e., G ={g))
In particular, Z, is a cyclic group with respect to addition modulo p.
Theorem 33. If p is prime, then Z;, is a cyclic group
For example, the theorem implies that Z3 is a cyclic group.

o (2) ={1,2,4}, and therefore 2 is not a generator of Z%

o (3) ={1,3,2,6,4,5} = Z% and therefore 3 is a generator of Z%

48

54 Discrete logarithm assumption

Let G be a group of prime order ¢ that is generated by g € G. In other words, G = {go,gl, e ,gq’l}. Therefore,
for every h € G there is a unique = € Z, such that h = g”. = = log, h is called the discrete logarithm of h, with
respect to g.

Some simple facts:

e log,(1)=0
« log, (k1 - hy) = [(log, hy +log, hz) mod g

Let G be a PPT algorithm that on input 1™ outputs (G, ¢, g) where G is a cyclic group of order ¢ that is generated
by g, and ¢ is an n bit prime.
The Discrete Logarithm (DL) Assumption: For every PPT algorithm A there exists a negligible function
v (+) such that
Pr[A(G,q,g,h) =log, h] <v(n)

Where (G, ¢q,g) < G (1™) and h < G. This naturally defines a family of one way functions, where
f(@.q.9):2,—c defined as fiq 4. (2) = g°

For example, we may use this to build collision resistant hash functions. These compress long inputs into short
outputs, and given h, it is hard to find x # 2’ such that h (x) = h (2').
Given G, construct
Pi = (Gen, H) as follows:

o Key generation: On input 1™, Gen runs G (1) to obtain (G,gq,g), and samples h < G. Then it outputs
s=(G,q,9,h)

+ Evaluation: On input (z1,22) € Z2, H, outputs g”*h*2 € G
Theorem 34. If the DL assumption holds relative to G, then I is collision resistant.
Proof Idea. Given a collision finder C for II, construct a DL algorithm A for G. A(G,q,g,h) runs C (G, q, g, h), and
obtains & = (x1,23), and &’ = (z},25). If # 2/, then A outputs
[(a:l —2))-(zh—x2)" " modgq
Otherwise A outputs L. So:

grrh®? = g'%/lha”l2 if and only if g”“_”’/l = pra—e2 (51)

54.0.1 Crypto primitives

So, we have shown that the RSA assumption implies the factoring assumption, which implies everything we learnt so
far (OWF, PRG, PRF, MAC, CPA/CCA secure symmetric key encryption). Additionally, the DL assumption implies
CRHF, which in turn applies all these primitives as well.

54.0.2 Commonly used groups

The prime order subgroup of Z; where p is prime:

*

o For p = tq+ 1, where ¢ is prime, consider G = {[z' mod p]: z € Zp}

e This is a group

-1
e It has order p = ¢, and therefore is cyclic

We also have the prime order subgroup of an elliptic-curve group. This is not required, but see KL 8.3.4 for further
details.

49

54.0.3 Problem difficulty

So, let us consider how hard are the problems we have so far discussed. Symmetric key cryptography, where we have
a block cipher with n bit keys requires roughly 2™ time attacks. A hash function with n bit output provides security
against approximately 2% time attacks.

However, there exist algorithms that factor numbers, that can run in much less that 2™ time. The best known

1 2
algorithm is the general number field sieve, which runs in 2° (3 -ttogm)3)
There are two classes of algorithms for DLog, those for arbitrary (generic) groups, and those that target specific
groups. The best generic algorithm runs in 2%, and is known to be “generically” optimal.

1 2
For subgroups of Zy, the best known algorithm is the number field sieve, which runs in 2¢ <"3 (logn)®)

Nothing better than 2% is known for elliptic-curve groups.

As a result of all this, recommended by NIST is “112 bit security”. For factoring, we want ||N|| = 2048 bits, and
DLog in order g subgroups of Zy where ||q|| = 224 bits, and ||p|| = 2048 bits. Finally, DLog in elliptic-curve groups of
order q : ||q]| = 224 bits.

This is much longer than for private-key cryptography. This explains in part why public-key cryptography is less
efficient than private-key cryptography.

We did not cover Generating random primes & primality testing, elliptic curve groups, and factoring & discrete
log algorithms.

For further reading: J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapter 7 (Number Theory
and Cryptographic Hardness Assumptions): 8.0-8.1.5, 8.2.0, 8.2.3-8.2.4, 8.3.0-8.3.2, 8.4 Appendix B (Supplementary
Algorithmic Number Theory): B.0-B.2

50

Part X
Lecture 6 - Public Key Cryptography —
2025-12-17

Notice: If you find any mistakes, please open an issue at https://github. com/robomarvini501/notes_intro_to_crypto
We will begin with the concept of key exchange, and move on to real cryptography systems.

55 Private key cryptography

Recall in the previous section of the course, covering symmetric cryptography, given shared secret keys, it is possible
to securely communicate over an insecure channel.

This means that we need to obtain these shared secret keys, but we cannot send them over this insecure channel. This
results in two problems:

1. Key distribution. We can do this by physically meeting, or having trusted messengers, and the like, but then
you are left with the problem of sharing a key with a company like Amazon.

2. Key storage: n users need (g) ~ n? keys, so each user needs to store n — 1 keys. Since keys need to be stored
securely, this becomes a lot of (increasingly expensive) space

55.1 Diffie - Hellman

In a seminal paper by Diffie and Hellman in 1976, called “New Direction in Cryptography”, they presented this
apparently impossible problem of securely sharing keys over an insecure channel, and how to solve it. This resulted in
a radical change, introducing the idea of public key cryptography. It was one of the first steps of moving cryptography
out of the private domain (intelligence, militaries, and the like), and into the public one, which all people could use.

The idea of public key encryption is as follows: Both Alice and Bob have a secret key sk, and public key pk. Bob
publicises his public key on his homepage, such that everyone can access it. Alice may now communicate with Bob
by encrypting with his public key, and he may decrypt with his private key, or mathematically:

Decgy, (Encyr, (m)) =m

This resolves the problem of everyone needing to store everyone else’s keys, since they can just check the shared
database of size n, that stores all of the public keys.
Diffie and Hellman envisioned three public key primitives:

o Key agreement protocols

o Public key encryption

o Digital signatures
They invented the first key agreement protocol, known as Diffie Hellman key agreement protocol, and the first public-
key encryption and digital signature schemes were invented a year later by Rivest, Shamir and Adleman.
55.1.1 Key-Agreement protocols

Alice and Bob run a protocol IT for generating a random key. Note that they are communicating over a potentially
unsecured channel, not in person. Alice generates r4, and Bob rg. Transcripty (17,74, rp) is the transcript of the
protocol.

Definition 55.1 (Correctness). II is a key agreement protocol if there exists a negligible function v (n) such that
foralln e N
Pr [K4(1",ra,7p) # K (1",ra,75)] < v(n)

TATB

This is to say, that K; generates a different key given the same inputs with an exceedingly low probability. Alice
has the inputs 1", r4, and outputs K4 (1*,74,rp) € K,,. Bob has the same, but with rg, Kp.
The important thing to note here is that Eve is eavesdropping the communication channel, and should not learn
any information on the resulting key. Specifically, from Eve’s point of view, the key should be “as good as” an
independently chosen key.

Definition 55.2 (Security). A key agreement protocol I is secure if
(Transcript (1", 14,78) , Ka (1™, 74,78)) = (Transcriptyy (1", ra,rg), K)

Where ra,rp + {0,1}", K < K,, are sampled independently and uniformly.

51

https://github.com/robomarvin1501/notes_intro_to_crypto

In order to create such a protocol, it is important to first remember the definition of computational indistin-
guishability. Two probability distributions are computationally indistinguishable if no efficient algorithm can tell them
apart:

Definition 55.3 (Computationally indistinguishable). Two probability ensembles X = { X}, cn,Y = {Yn},cn are
computationally indistinguishable if for all PPT distinguishers D there exists a negligible function v (-) such that

[Pr[D(1"2)=1]—-Pr[D(1",y) —1]| <v(n)
Where x + X,,, y + Y,

This is denoted X ~¢ Y. We typically consider an efficiently sample-able X and Y. Additionally, from this defini-
tion, we can say that pseudorandom means that it is computationally indistinguishable from the uniform distribution.

55.1.2 Diffie-Hellman Key Agreement

Let G be a PPT algorithm that on input 1™, outputs (G, ¢, g), where G is a cyclic group of order ¢, that is generated
by g, and ¢ is an n bit prime. Let us assume that (G, q,g) < G (1™) is generated, and known to both parties (a
publicly published one in the world).

So, Alice samples x < Z4, and then computes hy = g%, which she sends to Bob. Similarly, Bob samples y < Z,,
computes hp = g¥, which he sends to Alice. Alice then outputs K4 = (hp)”, and Bob outputs Kg = (ha)?. Here,
remember from the earlier definition that Pr[K 4 # Kg] < v (n) for a negligible v, since as we can see

hA = gw (52)
hp = g¥ (53)
Ka=(hp)" = (¢")" = (¢")" = (ha)’ = Kp (54)

So, above shows correctness, but we need to show security:
(Transcripty (1", ra,r5) , Ka (1", 74,78)) = (Transcriptny (1", ra,r5), K)

Definition 55.4 (The Decisional Diffie Hellman (DDH) Assumption). For every PPT algorithm A there exists a
negligible function v (+) such that

[Pr[A(G,q,9,9%, 9%, 9") =1] = Pr[A(G,q,9,9%,9%,97) = 1]| < v (n)
Where (G, q,9) <+ G(17), and x,y, 2 < Zq

Effectively, they made an assumption that it is secure, and it has still not been broken. If you break it, you will
get the Turing prize. Sadly, unlike Computability and Complexity, no guarantees of 100% in the course.

Definition 55.5 (Computational Diffie-Hellman Assumption). For every PPT algorithm A, there exists a negligible
function v () such that
[Pr[A(G.q,9,9% 9") = g™]| <v(n)

Where (G, q,9) <+ G(1™), and x,y + Z,

If you can solve CDH, then you can also solve DDH, so therefore DDH is a more secure assumption.

Some notes: Random elements vs random strings: Alice and Bob agree on a random group element g*¥ € G. They
typically need a random n bit key K € {0,1}". There are generic tools to extract such a key (called randomness
extractors).

There is also insecurity against active adversaries. Consider if Eve can change what is happening across the channel,
then Eve may perform individual key exchange with both Alice, and Bob, and they will be none the wiser, but all
their messages will pass through Eve.

Our picture of cryptographic primitives has grown! Behold:

52

RSA
Assumption

DL
Assumption

CDH
Assumption

DDH
Assumption

Factoring
Assumption OWEF
PRG
—> CRHF ——>
PRF\PRP
MAC
CPA\CCA-Secure
Key Symmetrif:-Key
Agreement Encryption

Figure 4: Cryptographic primitives

53

Part XI
Lecture 7 - Public key encryption — 2025-12-17

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

56 Public key encryption

56.1 Definitions

Public key encryption involves the following syntax: There are three algorithms II = (KeyGen, Enc, Dec):
o The key generation algorithm KeyGen (1™) outputs a secret key sk, and a public key pk
e Encryption algorithm Enc takes a public key pk and a plaintext m, and outputs a ciphertext ¢
e Decryption algorithm Dec takes a secret key sk and a ciphertext ¢, and outputs a plaintext m

It is correct if for every m € M
Pr[Decg (Encpr (m)) =m] =1

Definition 56.1 (IND-CPA). II has indistinguishable encryptions under a chosen-plaintext attack if for every PPT

adversary A there exists a negligible function v (-) such that

Pr[INDGEA (n) =1] < = + v (n)

So here the game is subtly different. Recall that the game is that A receives the encryption algorithm, produces
two plaintexts, receive the encryption of one of them, and has to guess which one. Now, instead of the encryption
algorithm, it receives the public key. There is no need to provide an encryption oracle, since A can encrypt by itself
using the public key. However, one must use a randomised encryption, to avoid A just encrypting mg,my by itself.
In comparison, for CCA A can also access a decryption oracle (aside from for ¢*).

56.2 Encrypting long messages

So we need to encrypt long messages. This can be done by encrypting them in blocks:

Ency, (m(l)) ..mp(”)) = (Encpk (m(1)> o Encyn (mp(n)>>

Theorem 35. If1I = (KeyGen, Enc, Dec) is CPA secure, then for any polynomial p (n) the schemeIl' = (KeyGen, Enc', Dec’)
is CPA secure

Proof Idea. Given an adversary A’ for II', construct an adversary A for II. A gets one challenge ciphertext, and
generates the others on its own.

A' has (1) 2)
advantage /2 Encpi (mo) Encpy (mo)

here*

- Suppose A’
OR Encyy (mgl)) Encyy (mgz)) has advantage

A' has €
advantage €/2 (1 2

here* Encyy (ml)) Encyy (m1))

* May need to consider A" & 1 — A’ depending
on the “direction” of the advantage

Figure 5: Hybrid argument

So A can generate the messages (mél), mé2)), and (m§1>, mf)), and mix the two halves. It can then (for example)

provide (mgl), mé2)) and (mél), mf)), with an advantage of at least g Since it can differentiate between the halves,

it is then able to differentiate between the messages. O

Now, public key schemes are somewhat inefficient, and slow to compute, but symmetric (private key) schemes are
much faster. The solution is called Hybrid encryption, where one generates a session key k, encrypts it (since it is
short) with a public key encryption scheme, and then encrypt m with a private key scheme, using k as the key.

54

https://github.com/robomarvin1501/notes_intro_to_crypto

57 Hybrid encryption

Definition 57.1 (Hybrid encryption). Let II = (KeyGen, Enc, Dec) be a public key encryption scheme, and let (E, D)
be a symmetric key encryption scheme. We can now define a public key encryption scheme II' = (Gen', Enc’, Dec') ,
where

o Gen' = Gen
o Enc, (m) samples k < {0,1}", computes c1 < Encyy, (k), and cz < Ey (m). It outputs ¢ = (c1,¢2)
o Ded, (c1,¢): Compute k < Decsy, (c1), and output Dy, (c2)

Theorem 36. IfII is CPA-secure, and (E, D) is IND-secure, then II' is CPA secure

Proof . Let there be A’ for IT'. It receives pk, outputs mg, m1, receives Encyy (k) , Ex (my), and outputs b'. From this
we may construct an adversary A for II, or an adversary B for (E, D). Taking the two messages that A’ outputs,
myg,m}, then we may consider the following:

—_

- (Encpr, (k) , By (mg)

[\]

(k) , Ex (mg))
. (Encpr (0™) ,E)

(0"), Bk (m))
- (Encpy (k) Bi (my))

% (Mg
!
k 1

w

. (Encpr (0™)

N

From 1 - 4 A’ let us say that A’ has the advantage €. As a result, there are 3 stages where one of them must have an
€
advantage of least 3 We can now build A, that simulates A’. Upon receiving my, m}, we will output

m():k
mle”

and receive in return the public key encryption of one of them ¢* = Encypy, (myp,). We can then then return (c¢*, Ej, (mg))
to A’, which will output the correct b’ with its advantage, since it can differentiate between Encyy (k) and Encyy (0™).
Conversely, if we set

!/
moy = my
my = m)

Then we can give A’ the input (Encyi (0™), ¢*), where ¢* = Ej, (my), and since it has the advantage for Ej, (my) and
Eji (m}), we will once again get back the correct b'.
Finally, we can also have A output

m():O"
mlik

Receiving back ¢* = Encyy, (my), give (¢*, Ej (m})) to A’, and thanks to the advantage that A’s has between Encyy, (0™)
and Encyy (k), it will return the correct b'. O

58 Constructions

58.1 El-Gamal Encryption

Behold a real public key encryption scheme. It is based on Diffie-Hellman key agreement, and relies on the DDH
assumption. Recall the DDH assumption: Let G be a PPT algorithm that on input 1", outputs (G, g, g), where G is
a cyclic group of order g, that is generated by g, and ¢ is an n bit prime.

Definition 58.1 (The Decisional Diffie Hellman (DDH) Assumption). For every PPT algorithm A there exists a
negligible function v (+) such that

Pr[A(G,q,9,9".9",9") =1] = Pr[A(G,q,9.9",9",9°) = 1]| < v (n)
Where (G, q,g) < G (1"), and x,y, z < Z,

So: Let G be a PPT algorithm that on input 1™ outputs (G, q,g), where G is a cyclic group of order ¢, that is
generated by g. We will define a public key encryption scheme II = (KeyGen, Enc, Dec) as

o Gen'(1™): Sample (G,q,g) < G (1"), and = < Z,. Let h = ¢g*, and output pk = (G, q,g,h), and sk =z

55

o Encp, (m): Sample y < Z,, and output ¢ = (g%, hY - m)

c
e Decgy (c1,¢2): Output m = —i

Sl
Note that there are methods for encoding binary strings as group elements, and that for simplicity, we assume that
the plaintext set is G.

h-m _ (g%)"-m
Decgi, (Encyy, (m)) = Decg, (gY,hY - m) = - = — =
By (m) = Decu (6", -m) = ot =

Theorem 37 (Security). Under the DDH assumption, the scheme II is secure

Proof . Hey look! Another reduction. We will assume that there exists A that breaks II, and so we can build D that
breaks DDH. So, D receives (g%, g¥, g*), and needs to return if z = xy, or if z is random.

Let us construct D, that receives (G, q,9,91,92,93). It will give A pk = (G, ¢,9,91). A will return mg, m1, and
then D will return to A the ciphertext ¢* = (g2, g3 - mp).

Case I:
(9,91,92,93) = (9,9", 9, 9™)

Here, A’s view is identical to the CPA experiment, and therefore
Pr[D(G,q,9,9%,9%,9"Y) =1 =Pr [IND%)I;A (n) = 1]
Case II: Let z be a random number, of appropriate size:

(9,91, 92,93) = (9,9%,9%,97)

The view of A is independent of the bit b, and so

T z 1
Pr[D(G7Qagag 7gy7g):1] = 5

So, given (G,q,g,91,92,93), our algorithm D will generate pk = (@G, q,g,91), and upon A response of mg, mq,
it will return ¢* = (ga2,93 - mp). It will take A’s output o', and output 1 if ¥ = b, and 0 otherwise. By the DDH
assumption:

v(n) > [Pr[D(G,q,9,9%,9",9") =1 = Pr[D(G,q,9.9%,9%,97) = 1]|
1

= [Pr[INDF5* (n) =1] - 5

58.2 RSA encryption
58.2.1 The RSA assumption

Let GenRSA be a PPT algorithm that on input 1™ outputs (N, e, d), where p, g are n bit primes, N = pq, gcd (e, ¢ (N)) =
1,and d = e~ mod ¢ (N). Here ¢ (N) is the order of our set Zj_,,,, such that ¢ (N) = (p —1) (¢ — 1).

Definition 58.2 (RSA Assumption). For every PPT A there exists a negligible function v (-) such that
Pr[A(N,e,z® mod N)=z] <wv(n)
Where (N, e,d) < GenRSA (1) and x < Z7,.
In short, given ¢ mod N, it is very hard to compute z. In other words, f,(x) = 2° mod N is a one way
permutation family. fy is the inverse of f., since ed =1 mod ¢ (N)
58.2.2 Textbook RSA encryption

Let GenRSA be a PPT algorithm that on input 1" outputs (N, e, d), where p, g are n bit primes, N = pq, ged (e, (N)) =
1,and d = e~ mod ¢ (N).
From here we create the public key pk = (IV,e), and the private key sk = d. Thus:
Encyr (m) =m® mod N (55)
Decy, (¢) = ¢ mod N (56)

56

This is... Not a great system to be honest. It was first suggested in 1977, but the security definitions, like CPA-security

were created in 1982. We may firstly note that Enc is deterministic, which is immediately bad. We will note that it
1

is also not CPA-secure, many attacks are known. For example, if m® < N, then ¢ = [m® mod N] = m®, and so cc = m.

We may take this moment to state NEVER USE TEXTBOOK RSA!!!
To emphasise this point I have used atrocious grammar. I hope this helps you remember this.
(There is in fact an argument, which I will link here, that RSA should never be used. It is not a part of the course,
and I have added it purely for your own interest.)

58.2.3 PKCS
Version 1.5 was standard issued by RSA labs in 1993. The idea is random padding:

pk = (N,e) (57)
sk=d (58)

So, Encyr, (m) = (r|fm)¢ mod N, for a freshly chosen random 7. This has the drawbacks that no proof of CPA security
exists (aside from if m is very short). Chosen plaintext attacks are known if 7 is too short, and chosen ciphertext
attacks are also known. In short, we do not know if it is secure, nor do we even have a neat little assumption (like
DDH) that 4f it holds, we know it to be secure.

Next is version 2.0, which uses a more structured padding: Optimal Asymmetric Encryption Padding (OAEP).
OAEP introduces redundancy, so that not every ¢ € Z? is a valid ciphertext. This means that Decgy (-) must check
for proper formatting upon decryption, and reject if it does not exist. This can be proved to be CCA-secure under
the RSA assumption, if G and H are modelled as “random” hash functions. It is widely used in practice.

m||0...0 r

I
@<—G‘

v
T

(s t)e mod N

Figure 6:

Note that the RSA permutation family is not a CPA-secure PKE scheme. It is however a family of trapdoor
permutations, which are one way permutations that may be efficiently inverted using a trapdoor. We will show a
generic construction of a CPA secure scheme from any TDP (trapdoor permutation) family:

Definition 58.3 (Trapdoor permutation family). A tuple (Gen, Samp, f,f_l) of PPT algorithms is a trapdoor
permutation family if:

o Gen (1) outputs pairs (I,td) defining a domain Dy
o (Geny, Samp, f) is a one way permutation family, where Geny is obtained from Gen by outputting only T
o [~ is deterministic, and for all (I,td) and x € Dy it holds that f;* (fr(z)) =

For simplicity, we will typically write = <— Dy instead of x +— Samp;, and (Gen, 1 f_l) instead of (Gen, Samp, f, f_l).
To summarise our cryptographic primitives once more:

57

https://blog.trailofbits.com/2019/07/08/fuck-rsa/

RSA
Assumption

|

TDP

DDH
Assumption

)

CDH
Assumption

Factoring
Assumption

\ CPA-Secure Key
—
/ PKE Agreement
bL . CRHF —>
Assumption

OWF
PRG
PRF\PRP
MAC

CPA\CCA-Secure
Symmetric-Key
Encryption

Figure 7: Cryptographic primitives

58

Part XII
Lecture 8 — 2025-12-31

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

59 Digital signatures

Alice and Bob wish to communicate, but Eve completely controls the channel. We would like to assure the receiver
of a message that it has not been modified. We will discuss the public key counterpart of message authentication
codes. The signer holds a secret signing key, and the verifier knows the corresponding public verification key. This
means that anyone can verify the signature, but only one person can create it. This is the inverse of encryption, where
everyone knows the public encryption key, but only 1 person knows the private decryption key.

This has the syntax IT = (Gen, Sign, Vrfy):

e The key generation algorithm Gen on input 1™ outputs a signing key sk, and a verification key vk
e Sign takes a signing key sk, and a message m, and outputs a signature o
o Vrfy takes a verification key vk, a message m, and a signature o, and outputs a bit b

Correctness: For every message m
Pr [Vrty,, (m,Signy, (m)) =1] =1

To compare against MACs:

Signatures MACs
n users require only m secret | n users require n’ secret
keys

Same signature can be verified
by all users

Publicly verifiable and transfer-
able

Privately verifiable and non
transferable

Provides non repudiation

More efficient (2 - 3 orders of

magnitude faster)

Table 1:

59.1 Security of Signatures

A knows vk, and can adaptively ask for signatures of messages of its choice. It then tries to forge a signature on a
new message.

(sk,vk) « Gen(1™)
vk

quignSk(-)

Figure 8: Signature game

We finish with @, the set of all queries asked by A, and

1, if Vify,, (m*,0*) =1Am* ¢ Q

SigForger; 4 (n) = {0 else

Definition 59.1. II is existentially unforgeable against an adaptive chosen message attack if for every PPT
adversary A, there exists a negligible function v (-) such that

Pr [SigForger 4 (n) = 1] <wv(n)

59

https://github.com/robomarvin1501/notes_intro_to_crypto

60 Constructions

One time signatures are used to construct stateful signatures, which may then be used to construct stateless signatures.

60.1 One time signatures
We will demonstrate Lamport’s One time scheme:
o sk = (xo,z1)
e vk=(f(x0), f(x1)), where f is a one way function
* Signy (b) =z
o Vrfy receives the message, and the signature, and checks it against the relevant side of the verification key

This way A needs to compute z1_;, which is equivalent to computing the inverse of f.
More formally: Let f be an OWF. We will define a signature scheme II = (Gen, Sign, Vrfy) for 1 bit messages as
follows:

o Gen (1™): Sample zg,21 < {0,1}", and compute yo = f(x¢), and y; = f(x1), output sk = (xg,z1) and
vk = (Yo, Y1)

o Signg, (b): Output o = a3
o Vrfy, .. (b,0): If f (o) =y output 1, otherwise output 0
Theorem 38. If f is an OWF, then Il is a secure one time signature scheme for 1 bit messages
Proof . The concept is that A forges a signature on b* = A, inverts yp» = f (2). Inverting f (xp+) is clearly hard,

even when given x1_p« and f (z1_p+). An inverter can guess the forged bit b* ahead of time with probability 3

We can construct an inverter B as follows, which takes as input y = f (z) for some x + {0,1}".
1. Choose b* < {0,1} and set yp« =y

2. Sample z1_p- < {0,1}", and set y1_p = f (w1_p)

3. Run A on input vk = (yo,y1)

4. When A requests a signature on b:

o If b=b* abort
o If b=1—b" output x1_p+

5. If A output a forgery o* on b*, output o*

So
Pr[B(f (z)) € f~ (f (x))] > Pr[SigForge 4 (n) = 1 A B does not abort]
= Pr [SigForgey; 4 (n) = 1] - Pr[B does not abort]

1
Pr [SigForgey 4 (n) =1] - 3
We may note that this scheme only works one time, for a single bit. We may extend this to [bit messages by creating
1.2 1
I R 7 S
sk = [az% o a:ll] (59)

_ o f(ah) 0
= E o
Or formally: Let f be an OWF. We define the signature scheme IT = (Gen, Sign, Vrfy) for | bit messages as follows:

o Gen (1"): For each i € [l], and b € {0,1}, sample z;;, + {0,1}" and compute y;, = f (z;p). Output sk =
{(331‘,0,361'71)}1-6[;] and vk = {(yi,ani,l)}ie[l]

o Sign, (m=mq...my): Outputs o = (T1,my,-- > Tlm,)
o Vify, , (m=mqi...my,0=(x1,...,2)): EVie[l] f(x;)=yim, output 1, else 0
Theorem 39. If f is an OWF, then I1 is a secure, one time signature scheme for l bit messages

Proof Idea. Suppose that A asks for a signature on m, and then forges on m* # m. The inverter B needs to guess
i € [l] such that m} # m, as well as guess the bit m}. O

60

60.1.1 Summary

Lamport theorised in 1979 that if OWFs exist, then for any polynomial [=1 (n) there is a one time signature scheme
for signing 1 bit messages. The following theorem is known as the Hash and Sign paradigm:

Theorem 40. If CRHFs exist, then there is a one time signature scheme that can sign messages of arbitrary polynomial

length.

60.2 Stateful signatures

We are now extending the game, such that A may request the signature of many different messages.
The signer updates the signing key after each signature.

o The initial state sky is produced by Gen : (vk, ski) < Gen (17)
e Signing the ith message updates sk; to skiy1 : (0, skiy1) < Signg,, (m;)
« Verification requires only vk
For existential unforgeability against an adaptive chosen message attacks
e A knows vk, and can adaptively ask for signatures of its choice
e The signing oracle maintains the internal state sk;
e A tries to forge a signature on a new message

Let us create a stateful scheme. Let II = (Gen, Sign, Vrfy) be a one time signature scheme for signing “sufficiently

long” messages. For m =my ...m, € {0,1}", we let m |id§f my...m; (and m |0déf €).
We will define II" = (Gen’, Sign’, Vrfy’) for signing n bit messages as follows:

o The signer’s state is a binary tree with 2" leaves
+ Each node w € {0,¢}~" has a left child w0, and a right child w1l
e The tree is of exponential size, but is never fully constructed

Key generation: Each node w € {0, I}S" is associated with (vk,, sky) < Gen (1™). Keys are generated, and stored
only when needed. The state sk] consists of all keys and signatures that were generated so far. vk’ = vk. and
sk} = sk.. Note that vk, is the root node, with children vkg, vk;.

To sign a message m € {0,1}":

1. Generate a path from the root, to the leaf labelled m: For each proper prefix w of m sample
(Vkawo, Skwo) 5 (Vkw1, k1) < Gen (1™)

2. Certify the path: For each proper prefix w of m, compute o, = Sign,;, (vkwo,vkw1)
3. Compute o, = Sign,, (m)

4. Store all generated keys as part of the updated state
5. Output the signature ({am“,vkm‘io};:ll ,am)

Simple example: The message m = 111 receives the signature Sign ;115 (111), Sign ;15 (vk111),Signg,, (vki1), Signg,. (vk:).
This simple example is missing the fact that if we now want to sign 110, we need to resign 11, which is a problem from
the attack scheme. To fix this, each parent provides the signature for both its children at once, and we thus avoid this
issue.

Theorem 41. If 11 is a one time signature scheme, then I is existentially unforgeable against chosen message attacks

Proof Idea. Fach sk, is used to sign exactly one “message”. If w is an internal node, then sk, is used to sign
(vkwo, vkyw1), and if w is a leaf then sk, is used to sign w. O

Proof Idea #2. Suppose that A asks to forge a signature ({an*i,vk* vk*

n—1
* *
me 00 m*|711} o ,Jm*) on m*. There are two

possible cases:

1. The full path to the leaf m* already existed, and A used the same path. This implies that A must have forged
a signature that is a relative of vk,,», and did not receive any signature that is a relative of vk,,~

61

2. The full path to leaf m* did not exist, or 4 used a different path. This implies that A must have forged a
signature that is a relative of vk,,«|, for i € {0,...,n — 1}, and received exactly one signature that is a relative
of vk,

O

This has the problem of needing to remember all the sks, since once we have signed a message, we cannot use sk,
any more, which is necessary to sign another message. We can now move on to stateless signatures, and thus remove
this need for state.

60.3 Stateless signatures

Instead of remembering sk; at every stage, we use PRFs to create them on the fly. The signer’s secret key sk is a seed
for a PRF Fyp (1). (7w,7,) = Fyi, (w) is used as the randomness needed for each node w € {0,1}=":

o If we {0,1}=" then r, is used for sampling (vky,, sk,) and 7/, is used for signing (vkwo, vky1)
o Ifwe {0,1}", then r, is used for sampling (vky, sk,), and r/, is used for signing w

Theorem 42. IfII is a one time signature scheme, and F is a PRF, then 11" is existentially unforgeable against
chosen message attacks

Proof Idea. Any adversary A against IT” can be used either as an adversary against the stateful scheme I’ or as a
distinguisher against the PRF F

Pr [SigForgery, 4 (n) = 1] < |Pr [SigForger, 4 (n) = 1] — Pr [SigForger;, 4 (n) = 1]| + Pr [SigForge, 4 (n) = 1]
= ‘Pr (D0 (1) = 1] = Pr [DFO) (17) =1]

+ Pr [SigForge, 4 (n) = 1]

61 Certificates and public key infrastructure

Public key cryptography is great, but we need to distribute the public keys somehow. Keys must be authenticated in
order to avoid man in the middle attacks. This is done by making use of Certificate Authorities:

e A certificate is a signature binding an identity to a public key

o We assume that we already trust the CA’s verification key vkca (by hard wiring it into the browser source code
or some such)

. . . d . . .

e The CA provides Alice with certca_s tef Sign Alice’s key is pka)

Sk)cA(

o Alice then sends to Bob both pka, and certca_a

So for example, we can have a root, that has signed all of HUJI, www.gov.il, and CNN. HUJI then signs on CS,

and Chem, and CS can sign on Alice, and Bob. This way, everyone only signs a small number of relevant keys, and I
can use this chain of trust to trust someone else’s key, because I trust the root node.
Certificates should not be valid indefinitely, since an employee may leave or get fired, and secret keys can get stolen.
One solution is to add an expiration date, such that the signature is not valid after that date, another approach is
to add a revocation list that the authority publishes, and when I received a signed key, I check it against the CA’s
revoked list.

62 User-server identification

We need a way to identify users to websites, like when you log in to moodle. A trivial method would be for the user to
hold a password p, the server to know y = f (p) for some function f, and the user identifies themselves by sending p.
This is obviously terrible. It can however be slightly improved by using a signature scheme. The user has the signing
key sk, and the server knows the verification key vk. The user identifies themselves by signing a message that the
server has randomly generated for them.

62

Part XIII
Exam 2025A — 2026-01-07

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

63 Question 1

Let there be a family of collision resistant functions Hy {0,1}*" — {0,1}". Let there also be a PRG G : {0,1}""" —
{0.13*".

63.1 Part A

Consider
Fy(z1]|22) = Hs (Hs (21) [Hs (22))

Where |21, 22| = 2n, and F, : {0,1}*" — {0,1}". Is the family F, collision resistant?

Sol. Yes. Let us assume towards contradiction that Fj is not collision resistant, so there exists an adversary A that
finds collisions in Fy. Let us create B (s), which runs A (s), which returns (z1,x2), (2}, 2}). Since (z1,22) # (2}, 5)
then at least one of the pair of variables x;,) : i € {1,2} are different, so let us assume wlog that z; #). If so, then
there are 2 cases:

1. Hg (z1) = Hs (2}) in which case we are done, and return (x1,})

2. H, (1) # Hs (2}) in which case we return (H; (1) ||Hs (x2) || Hs () [|Hs (25))

63.2 Part B

Consider

Where
L :{0,1}""" = {0,1}"

Is the family L collision resistant?
Sol. No. We will bring a counterexample of (H’,G") such that L is not collision resistant.

H! = H, (61)
,)G (x), ifxg {017}
¢'(2) = {0, if z € {0",1"} (62)

Theorem 43 (Claim 1). G’ is a« PRG

Proof . We will assume towards contradiction that there exists an adversary A that can differentiate between the
output of G’ and random, and from that build the adversary B that can differentiate between the output of G and
random. It will be exactly the same adversary, and will have the same probability as G for differentiating between G

2
and random, with the addition of _—. Since finding this collision in G is in fact negligible, and the addition of on is

also negligible, then the finding of this collision is also in fact negligible. O
Theorem 44 (Claim 2). L, (z) = Hs (G’ (z)) is not a CRH

Proof . Pretty trivial, since we know the definition of G’, and may simply give L the two inputs such that G returns
the same output, and we have found a non trivial collision in L O

64 Question 2

Let f:{0,1}" — {0,1}" be a one way function. We will use this to create a new signature scheme II = (Gen, Sign, Vrfy):
o Gen (1) =@1,...,mp < {0,1}", sk = (21,...,2n), vk = (Y1, yn) = (f (z1), ..., f (zn))
o Sign (sk,m): o = L (as in, empty string). For 1 <4 < n, if m[j] = 1, then o||x;, then return o

o Vrfy (vk,m): Passes over every bit in the message, and knows that the corresponding part of the message must
be the preimage of a part of the vk, so it computes the function of it, and checks if it appears in the verification
key

63

https://github.com/robomarvin1501/notes_intro_to_crypto

64.1 Part A

Show that the system is not secure as a one time signature.
Sol. Tt’s trivial. The empty message 0" will have the signature 1, without even calling the oracle.

64.2 Part B

Correct the signature scheme such that it is now secure, and that the size of vk is n? + n (log (n) + 1) bits.

Sol. We will note that in the unaltered scheme, an adversary can change an arbitrary 1 in the message to a 0, by
simply removing the relevant part of the signature. We can resolve this by signing the number of Os in the message,
which requires log (n) + 1 bits, and thus the adversary cannot change the numbers of 0s, since he would also have to
change the signature of the number of Os:

e KeyGen (1™): sk = (:171, .. ,xn,:c?H_l, ... ,x%+logn+1,x,1l+1, . 7$’}L+logn+1>
Uk = (f (xl) 3ty f (an) >f (1’2+1) L] f (x91+logn+l) ,f (‘T}l—‘rl)] f (xyll+1ogn+1))
o Sign (sk,m): Sign (m) ||Lamport (zeroes (m))

This solves it in n? + 2n (log (n) + 1).

To prove it, let us assume towards contradiction that there exists adversary A that can win the game against this
scheme. So, A outputs m, and receives in return from the oracle Sign (m) , Lamport (zeroes (m)), and then at the end
outputs m*, sign (m*) , Lamport (zeroes (m*)). There are now two cases:

1. Zeroes (m*) = Zeroes (m): Then this message must be a permutation of another, since there are the same
number of 0s. In this case, then we may break it similarly to how we did Lamport.

2. Zeroes (m™) # Zeroes (m): In this case, then we have succeeded, since we have created a new message with the
same signature.

In order to remove the 2, then we may simply change KeyGen to remove the doubling of the bits from 11, ..., Tntlogn+1,
and Sign to be Sign (m||zeroes (m)). This may be proven with the exact same proof.

65 Question 3

65.1 Part A

Given a cyclic group (G, g, q) such that DDH holds ((¢9%, ¢¥, ¢*¥) = (9%, ¢¥, g%)), let there be two distributions:
(9",9%, 9™, g") (63)
(9.9".9",9™) (64)

Such that ay,as,r1,7r2,b = Z,;. Show that these distributions are indistinguishable.

Sol. Let us assume towards contradiction that they are distinguishable. So, we are building A (g%, g¥,T) where
g + {g%¥, g%} that succeeds against DDH. We will do this by building B (¢%, g%2, T, (¢¥)**). When T is random, then
B has received lower option, and when 7' is g*¥, then B has received the top option. We have thus built an adversary
that may win DDH.

65.2 Part B

We will define a key exchange protocol. In order for Alice and Bob to swap keys, Alice chooses k,r < {0,1}", and
sends Bob s = k @ r. Bob chooses t < {0,1}", and sends u = s @ t. Alice sends Bob w = u & r. Alice outputs k, and
Bob outputs w @ t. Show that the protocol is correct, and whether or not it is secure.

Sol. Correctness:

whOt=udrdt
=sPtOrdt
=k®Proterodt
=k
Security: Not secure, in the slightest. The adversary observes s = k @ r, and u = s ® t. From this, they may

compute sQu=k®rdkdrdt =t From there, like B, they have ¢, and when w is transmitted, they may compute
w @t =k, and find the secret key.

64

Part XIV
Lecture 9 — 2026-01-14

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvinl1501/notes_intro_to_crypto

66 Introduction

Zero knowledge proofs are proofs that reveal nothing beyond the validity of the assertion being proved. This seems
to be a contradicting definition, but we will see that it is not. They were introduced by Goldwasser, Micali, and
Rackoff in 1985, and are a central tool in cryptographic protocols. We are not going to pass over the entire powerpoint
presentation, this is simply going to be an introductory lecture.
Consider for example proving that I have 1000NIS in my pocket. I could prove by taking it out and counting it, but
I could potentially want to prove it without showing you what types of notes I have.
A less contrived example would be finding a mathematical proof, which also has monetary value. I do not want to
publish this proof, since then I no longer have the monetary value of the secret (suppose it is an algorithm, which you
do not want everyone else to be able to implement). So, zero knowledge proofs can be helpful here, to show that I
have proven the theorem, but not distribute the solution to everybody.

This is often thought of as an interactive process (it does not have to be, but it can be easier to think of it as such,
and so we will begin by doing so).
A classic example is proving that you have solved a sudoku, without demonstrating the result. This is classic, and
there are papers that demonstrate it, that are supposedly very readable, and easy to understand.

Sudoku is a slightly contrived example, since it is very clearly in P, consider instead the 3 colour problem. Can
Alice prove that the graph is 3 colourable without revealing the 3 colouring? Well, hopefully we will discuss that later.
Furthermore, given n = pq, we can show that Alice knows how to factor n, without revealing p or q.

67 Interactive proofs

We will begin by defining classic NP problems. NP is the class of

Definition 67.1 (NP). All languages L, equipped with an efficiently computable relation Ry, such that
x €L Jw: (r,w) € Ry Alw| = poly(|x])

So, given a statement x € L, and proof w, NP proofs are inherently non-ZK, since Bob gains the ability to prove
x € L to others.
Let us extend this with two new ideas:

o Interaction: Replace a static proof with an interactive protocol
¢ Randomisation: Allow the verifier to toss coins, and err with a small probability

We will create the prover P, which has the random tape rp, and the verifier V, with the random tape ry,. We will
define the notation:

e (P,V) () is the distribution of the transcript of the protocol
o outy [(P,V) (x)] is the distribution of V’s output

Definition 67.2 (Interactive proof system). An interactive proof system for a language L is a protocol (P,V)
where V is computable in probabilistic polynomial time, and the following holds:
e Completeness: For every x € L:
Pr [outy [(P,V) (z)] = Accept] =1

TP,V

o Soundness: For every x ¢ L, and for every computationally unbounded P*:

Pr [outy [(P*,V) (x)] = Accept] <

TP,Tvy

N =

We will state that IP is the class of all languages with an interactive proof system. IP contains NP, and in fact,
1 1
IP = PSPACE. We can reduce the soundness error from 3 to € with log () independent repetitions.
€
Definition 67.3 (Isomorphic). Two graphs Go = (Vo, Ep), and G1 = (V1, E1) are isomorphic if there exists a one
to one mapping 7 : Vo — V1 such that (u,v) € Ey < (7 (u),m (v)) € Ey for every e,v € Vp

65

https://github.com/robomarvin1501/notes_intro_to_crypto

That is to say, two graphs are isomorphic if we can rename the nodes in order to transform one into the other.
We will note that this problem is in NP, since we can trivially build a verifier, but beyond this, we know nothing. We
know not if it is NP-hard, NP-complete, or in P.

We can define the set of isomorphic graphs GI = {(Go, G1) : Gy is isomorphic to G1} € NP. Similarly, we can define
the other class of graphs that are not isomorphic: GNI = {(Gy, G1) : Gy is not isomorphic to G1}. This class is not
known to be in NP.

We can now ask the question as to how to prove to an efficient verifier that Gy, G1 are not isomorphic. We will posit
that GNI € I P: Given the common input (G, G1), the prover, and the verifier, the verifier will try and find the points
where (if) the prover is guessing.

Intuitive solution: The verifier will create two new graphs, which are permutations on the originals, 7 (Gg) , 7 (G1).
The verifier will also create 7 (Gp) : b < {0,1}. If the graphs are isomorphic, then all the graphs, including the new
ones, are also isomorphic. If they are not, then 7 (Gy) is not isomorphic to 7 (G1), and 7 (G) will be isomorphic to
one of them.

Formal: The verifier will create H = 7 (G}) for a random permutation 7, and b < {0,1}. H is then sent to the
prover. The prover will then find z € {0,1}, such that H is isomorphic to G, and will then respond with z. The
verifier will accept if and only if z = b.

Theorem 45. This protocol is an interactive proof for GNI

Proof . Firstly, we will claim completeness. If (Go, G1) € GNI, then the verifier always accepts, since no graph can be
isomorphic to both Gg, and Gj.

1
Next, soundness, if (Go, G1) ¢ GNI, then for every P* the verifier accepts with probability 3 This is true since P*’s

1
view is independent of b, so therefore for any z € {0,1} that P* will output, we have Pry (91} [z = b] = 7 O

68 Zero knowledge proofs

An interactive proof system is zero-knowledge if whatever can be efficiently computed after interacting with P on
input « € L can also be computed given only x. This should be true even when P is interacting with a malicious
verifier.

Let us return to the isomorphic classes. Can we prove that Gy and G; are isomorphic without revealing the
isomorphism? A solution needs to enable completeness, soundness, and zero knowledge (ZK). Hear me and rejoice,
for we are able so to do. Gird thy loins, and behold the following solution:

Intuition: Two graphs are isomorphic if there exists a permutation that transforms from one to the other (7). There
therefore also exists 7—!, which transforms in the opposite direction. Let us consider another permutation o, which
transforms G to H. Should Gy and G be isomorphic, then there also exists ¢’ which transforms from G to H. We
can send the transformed graph H = o (Gp) to the prover, and it will respond with the permutation that transforms
G, to H. This is ZK, since it teaches us nothing on the permutations m, 7~!, but demonstrates that the prover can
find these permutations.

Formal: The prover will sample a random permutation o, and send H = o (G) to the verifier. The verifier then
responds with a request that the prover show that H is isomorphic to Gy, for b <— {0,1}. The prover will then respond

with
o, ifb=0
v = .
cow~, ifb=1

Which provides the required transformation to H for Gy. The verifier then accepts if and only if v (G,) = H.
Correctness: If the two graphs are isomorphic, then the verifier will trivially receive what it requested.

ZK: We need to show that the prover did not leak information. Since the only leak that can happen is o o 7!, but
since we have further transformed 7—! with o, it acts sort of like a one time pad, and so it does not leak .
Soundness: The two graphs are not isomorphic, so the prover sends some graph, it can be a transformation of Gy,

1
or (31, or perhaps some other graph G5, and in every case, the prover will make a mistake with probability of 2 as

required.

69 Zero knowledge proofs for NP

Theorem 46. Assuming that OWFs exist, then any L € NP has a zero knowledge interactive proof. Furthermore,
the prover’s strategy can be implemented in probabilistic polynomial time, provided an NP witness for membership of
the common input.

Steps. 1. Construct a ZK proof for some NP complete language. Use G3C (graph 3 colouring), and the tool
commitments schemes (which are based on OWFs)

66

2. Given any NP language L, a common input x, and a witness w, we reduce them to G3C, and then use the above

ZK proof.
Since we showed reductions in computability, and complexity, we will focus on step one, and commitments schemes
O

69.1 Tool: Commitment schemes

These are the basic ingredient in many cryptographic protocols. They are a digital analogue of locked boxes. The
sender S has a value v, and a random tape rg. The sender sends the commit phase to the receiver, and receives a
protocol (S, R) in response. It sends (v,rg) in the reveal phase, and the receiver R accepts v if and only if (v,rg)
are consistent with the commit phase. Commitment schemes have the following security requirements:

o Hiding: At the end of the commit stage, the receiver has no knowledge of v
« Binding: The sender cannot find two valid openings (v,rg) and (v',r%) for v # v’

Definition 69.1 (Hiding). A commitment scheme (S, R) is computationally hiding if for every PPT receiver R*
and for every two values v # v’ it holds that

viewg- [(S (v), R") (1")] &° viewg- [(S (v) , R") (1")]

Perfect (statistical) hiding is when viewg~ [(S (v), R*) (1™)] and viewg~ [(S (v'), R*) (1™)] are identical (statistically
indistinguishable) for any unbounded R*

Definition 69.2 (Binding). A commitment scheme (S, R) is computationally binding if for every PPT sender S*
there exists a negligible function v (n) such that

Pr{((v,r,v',r"), com) < (S*, R) (1™) : v # v' A (v,7) is consistent with com A (v',7") is consistent with com] < v (n)

where
com viewg [(S™, R) (1")]

69.1.1 Some applications of commitments

Consider if you are playing some board game over the phone, which involves throwing dice. Your opponent tells you
that they threw 6. Commitments can be used to to ensure that this is the truth. Let us simplify this somewhat into
coin flipping, neither party wants to speak first. Alice may send a commitment of what she tossed, Bob then responds
with his toss. Alice then sends the reveal for her toss, which Bob can then verify, so this way, Alice could not change
her result, and Bob can believe it.

Let us return to ZK proofs for NP.

Definition 69.3. A graph G = (V, E) is 3 colourable if there exists a mapping ¢ : V. — {1, 2,3} such that ¢ (u) # ¢ (v)
for every (u,v) € E.

We want to prove that G is 3 colourable, without revealing a 3 colouring. The high level idea is to break that G is
3-colourable into polynomially many pieces. Each piece does not reveal any information, but combining all the pieces
yields a proof that G is 3-colourable. We can implement this using commitments.

Solution: Given the common input G = (V, E), and an auxiliary input to the prover, which is a 3 colouring
¥ :V = {1,2,3}. The protocol is as follows:

e P uniformly chooses a permutation 7 over {1,2,3}, and lets ¢ “f ro)

e P commits to the value p (w) for every w € V using a statistically binding commitment

o V uniformly chooses an edge (u,v) € F, and sends it to P

o P reveals the openings of ¢ (u), and ¢ (v)

o V accepts if and only if the openings are valid, i.e. ¢ (u),p (v) € {1,2,3} A (u) # ¢ (v)

This protocol is repeated ¢ - |E| times for soundness e~ *.

Since we have shown ZK proofs for G3C, and there exist reductions for every language in NP, we can thus show a
ZK proof for every language in NP.

67

	I Game sheet
	Perfect secrecy
	Indistinguishable encryption
	PRGs
	Semantic security
	One way functions
	Computational Indistinguishability
	Hybrid argument
	Chosen Plaintext Attack (CPA)
	Pseudorandom Functions
	MACs
	CRHF
	CCA
	Key Agreement
	Diffie-Hellman

	Public Key Encryption
	Digital Signatures
	Interactive Proofs
	Zero Knowledge Proofs
	Commitments
	ZKP for G3C with Commitments
	Cryptography Primitives

	II Lecture 1 — 2025-10-22
	Course overview
	What is cryptography?
	Course objectives

	Symmetric key encryption
	Correctness
	Caesar Cipher
	Substitution cipher
	Vigenère cipher

	Historical ciphers
	Basic principles of modern cryptography
	Perfect secrecy
	One time pad
	Limitations of the one time pad
	Characterising perfect secrecy

	Tutorial

	III Lecture 2 - Private key encryption — 2025-10-29
	Reminder
	Computational security
	Approaches
	Concrete approach
	Asymptotic approach

	Indistinguishable encryptions
	Pseudo-random generator
	Do PRGs even exist?

	PRG-based OTP
	Indistinguishable encryptions revisited
	Semantic security
	One way functions

	IV Lecture 3 - Private key encryption II — 2025-11-05
	Recap
	Computational Indistinguishability
	Security against a CPA
	Pseudorandom functions
	CPA secure encryptions from PRFs
	Practical heuristics block ciphers

	V Tutorial 2 — 2025-11-05
	Recap
	Pseudorandom Generators (PRGs)
	Indistinguishable proofs

	VI Lecture 4 — 2025-11-19
	Introduction
	Message authentication
	Message Authentication Code (MAC)
	Fixed length MAC
	Arbitrary length messages
	Attempt 1
	Attempt 2
	Attempt 3
	Solution 1
	Solution 2 (CBC-MAC)
	Solution 3 - Hash and Authenticate

	Collision-Resistant Hash Functions
	Authenticating Arbitrary-Length Messages
	Returning to encryption
	Chosen Ciphertext Attack CCA
	CCA-Secure encryption scheme

	Crypto primitives so far

	VII Tutorial 3 — 2025-11-19
	Reminder

	VIII Tutorial 4 — 2025-12-03
	Question 1
	Solution
	Solution II

	Question 2
	Solution
	Extension

	IX Lecture 5 - Number Theory and Hardness Assumptions — 2025-12-10
	Number theory
	GCD
	Modular arithmetic
	Groups
	Examples
	Group exponentiation
	Z star N

	Hard problems

	Factoring and RSA assumptions
	Factoring assumption
	RSA assumption
	Chinese Remainder Theorem

	Cyclic groups

	Discrete logarithm assumption
	Crypto primitives
	Commonly used groups
	Problem difficulty

	X Lecture 6 - Public Key Cryptography — 2025-12-17
	Private key cryptography
	Diffie - Hellman
	Key-Agreement protocols
	Diffie-Hellman Key Agreement

	XI Lecture 7 - Public key encryption — 2025-12-17
	Public key encryption
	Definitions
	Encrypting long messages

	Hybrid encryption
	Constructions
	El-Gamal Encryption
	RSA encryption
	The RSA assumption
	Textbook RSA encryption
	PKCS

	XII Lecture 8 — 2025-12-31
	Digital signatures
	Security of Signatures

	Constructions
	One time signatures
	Summary

	Stateful signatures
	Stateless signatures

	Certificates and public key infrastructure
	User-server identification

	XIII Exam 2025A — 2026-01-07
	Question 1
	Part A
	Part B

	Question 2
	Part A
	Part B

	Question 3
	Part A
	Part B

	XIV Lecture 9 — 2026-01-14
	Introduction
	Interactive proofs
	Zero knowledge proofs
	Zero knowledge proofs for NP
	Tool: Commitment schemes
	Some applications of commitments

