
Game sheet
Gidon Rosalki

February 3, 2026

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvin1501/notes_intro_to_crypto

1 Perfect secrecy
Definition 1.1 (Perfect secrecy). A symmetric key encryption scheme Π = (KeyGen,Enc,Dec) is perfectly secret
if for every distribution over M, and for every m ∈M, and for every c ∈ C it holds that

Pr [M = m|C = c] = Pr [M = m]

That is, the probability that some plaintext is the plaintext given the ciphertext, is the same as the probability
that some plaintext is the plaintext, with no priors whatsoever.

2 Indistinguishable encryption
Definition 2.1 (Indistinguishable encryption). Π has indistinguishable encryptions if for every PPT adversary
A there exists a negligible function v (·) such that

P [INDΠ,A (n) = 1] ≤ 1

2
+ v (n)

where the probability is taken over the random coins used by A, and by the experiment.

A (1n)

k ← KeyGen (1n)

m0,m1

b← {0, 1}

c∗ ← Enck (mb)
c∗

b′

INDΠ,A (n) =

{
1, if b′ = b

0, otherwise

3 PRGs
Definition 3.1 (PRG). Let G : {0, 1}n → {0, 1}l(n) be a polynomial-time computable function, and let l (·) be a
polynomial such that for any input s ∈ {0, 1}n, we have G (s) ∈ {0, 1}l(n). Then, G is a pseudorandom generator
if the following two conditions hold:

• Expansion: l (n) > n

• Pseudorandomness: For every PPT “distinguisher” D, there exists a negligible function v (·) such that∣∣∣∣∣ Pr
s←{0,1}n

[D (G (s)) = 1]− Pr
r←{0,1}l(n)

[D (r) = 1]

∣∣∣∣∣ ≤ v (n)

So, the probability that the distinguisher may tell the difference between the output of the PRG, and truly random
noise, is less than the output of the negligible function for that length of input.

1

https://github.com/robomarvin1501/notes_intro_to_crypto

4 Semantic security
Definition 4.1 (Semantically secure). Π is semantically secure if for every adversary A there exists a PPT
“simulator” S such that for every efficiently sampleable plaintext distribution M = {Mn}n∈N, and all polynomial-time
computable functions f and h, there exists a negligible function v (·) such that

|Pr [A (1n,Enck (m) , h (m)) = f (m)]− Pr [S (1n, h (m)) = f (m)]| ≤ v (n)

where k ← KeyGen (1n) and m←Mn

Or in other words, whatever you can learn from the encryption, can also be efficiently learnt without the encryption,
or most simply, the ciphertext teaches us nothing. Π is semantically secure if and only if it has indistinguishable
encryption.

5 One way functions
Definition 5.1. A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is one way if for any PPT A, and
negligible function v (·)

Pr
y←f(Un)

[
A (1n, y) ∈ f−1 (y)

]
≤ v (y)

Easy to compute, hard to invert.

6 Computational Indistinguishability
Definition 6.1 (Computationally indistinguishable). Two probability distributions X = {Xn}n∈N and Y = {Yn}n∈N
are computationally indistinguishable if for every PPT distinguisher D there exists a negligible function v (·) such
that ∣∣∣∣ Pr

x←Xn

[D (1n, x) = 1]− Pr
y←Yn

[D (1n, y) = 1]

∣∣∣∣ ≤ v (n)

This is denoted X ≈c Y

7 Hybrid argument
This is a complicated technique, so we shall present an example.

Theorem 1. Let G : {0, 1}n → {0, 1}4n be a PRG, then H (s1, s2) = G (s1) ||G (s2) is a PRG.

Proof . Our paradigm for this kind of proof is reduction via a hybrid argument.
Reduction: Given a distinguisher D, for H, construct a distinguisher A for G.
Hybrid argument: Let us suppose that between G (s1) , G (s2) D has advantage ε. Let us create a new PRG, that
given s1, s2, ignores s2, and returns G (s1) , r2. So, between G (s1) , G (s2) and G (s1) , r2, it holds that D has at least
the advantage ε

2
, or between G (s1) , r2 and r1, r2 it holds that D has the advantage of at least ε

2
.

r1 r2

Suppose that
D has an ad-
vantage of ε

G (s1) r2

G (s1) G (s2)

Or here

D must have
an advan-

tage of ε
2 here

So:

ε ≤ |P [D (G (s1) ||G (s2)) = 1]− P [D (r1||r2) = 1]|
≤ |P [D (G (s1) ||G (s2)) = 1]− P [D (G (s1) ||r2) = 1]|+ |P [D (G (s1) ||r2) = 1]− P [D (r1||r2) = 1]|

Let us define A, which on input z ∈ {0, 1}4n with sample s1 ← {0, 1}n and output D (G (s1) ‖z). In this case, we
have created an adversary that distinguishes between the first 2 cases based off the difference of G (s2) and r2. We
may similarly create a second adversary that performs the same, and outputs D (Z‖r2). Since one of these transitions
must be distinguishable with an advantage of at least ε

2 , we have found an adversary A for G, which is a contradiction
to the given that G is a PRG.

2

8 Chosen Plaintext Attack (CPA)
We can modify Indistinguishable Encryption such that A may request any number of encryptions (From an oracle),
before it hands over the two messages between which it must distinguish:

Definition 8.1 (IND-CPA). Π has indistinguishable encryptions under a chosen-plaintext attack if for every PPT
adversary A there exists a negligible function v (·) such that

Pr
[
INDCPA

Π,A (n) = 1
]
≤ 1

2
+ v (n)

This is to say, that the probability of winning the CPA game (described below) is 50%, plus negligible.

A (1n)

k ← KeyGen(1n)

m

Enck(m)

b← {0, 1}
c∗ ← Enck(mb)

m0,m1

c∗

m

Enck(m)

b′

INDCPA
Π,A (n) =

{
1, if b′ = b

0, otherwise
(1)

3

9 Pseudorandom Functions
Definition 9.1 (PRF). An efficiently computable keyed function

F : {0, 1}n × {0, 1}n → {0, 1}l(n)

is pseudorandom if for every PPT distinguisher D there exists a negligible function v (·) such that∣∣∣Pr [DFk(·) (1n) = 1
]
− Pr

[
Dh(·) (1n) = 1

]∣∣∣ ≤ v (n)

where k ← {0, 1}n and h← Funcn→l

The methodology for using PRFs is as follows:

1. Prove security assuming a truly random function is used

2. Prove that if an adversary can break the scheme when PRF is used, then it can be used to distinguish the PRF
from a truly random function

We may consider Enc to be, for example something that returns (r,O (r)⊕mb), and thus try and show if this is
a CPA secure scheme or not. For example, for the theorem If F is a PRF, then ΠF is CPA-Secure. For the truly
random function h, Πh is secure, so we may show that Πh is indistinguishable from ΠF , by contradiction that finds
that ΠF is not a PRF.

DO

A (1n)

k ← KeyGen(1n)

m

Enck(m)

b← {0, 1}
c∗ ← Enck(mb)

m0,m1

c∗

m

Enck(m)

b′

0 or 1

INDCPA
Π,A (n) =

{
1, if b′ = b

0, otherwise
(2)

4

10 MACs
Definition 10.1 (MAC scheme). A MAC (Message Authentication Code) scheme Π = (Gen,Mac,Vrfy) is secure if
for every PPT adversary A, there exists a negligible function v (·) such that

Pr [MacForgeΠ,A (n) = 1] ≤ v (n)

This is to say, it is very hard for a PPT adversary to create a new message, with a correct MAC.

A

k ← KeyGen(1n)
m

Mack (m)

(m∗, t∗)

Let Q = the set of all queries asked by A (3)

MacForgeΠ,A (n) =

{
1, if Vrfyk (m

∗, t∗) = 1 ∧m∗ /∈ Q
0, otherwise

(4)

Note that this does not prevent replay attacks!

11 CRHF
Definition 11.1 (Collision Resistant). Φ is collision resistant if for every PPT adversary A there exists a negligible
function v (·) such that

Pr [HashCollΦ,A (n) = 1] ≤ v (n)

We may describe HashColl as follows:

A

s← Gen (1n)s← Gen (1n)

s

x, x′

HashCollΦ,A (n) =

{
1, if Hs (x) = Hs (x

′) ∧ x 6= x′

0, otherwise
(5)

5

12 CCA
Definition 12.1 (CCA-IND). Π has indistinguishable encryptions under a chosen-ciphertext attack if for every PPT
adversary A there exists a negligible function v (·) such that

Pr
[
INDCCA

Π,A (n) = 1
]
≤ 1

2
+ v (n)

In this case, we may also say that Π is CCA-secure.

Note that CCA implies authenticity, since given Enck (m), it is hard to generate Enck (m′) for a “related” m′ (such
as m′ = m+ 1).

AEnck(·),Deck(·)

k ← KeyGen(1n)

m

Enck(m)

c

Deck (c)

b← {0, 1}
c∗ ← Enck(mb)

m0,m1

c∗

m

Enck(m)

c

Deck(c)

b′

Q = set of all decryption queries asked by A (6)

INDCCA
Π,A (n) =

{
1, if b′ = b ∧ c∗ /∈ Q
0, otherwise

(7)

13 Key Agreement
Definition 13.1 (Correctness). Π is a key agreement protocol if there exists a negligible function v (n) such that
for all n ∈ N

Pr
rA,rB

[KA (1n, rA, rB) 6= KB (1n, rA, rB)] ≤ v (n)

This is to say, that Ki generates a different key given the same inputs with an exceedingly low probability.
The important thing to note here is that Eve is eavesdropping the communication channel, and should not learn
any information on the resulting key. Specifically, from Eve’s point of view, the key should be “as good as” an
independently chosen key.

Definition 13.2 (Security). A key agreement protocol Π is secure if

(TranscriptΠ (1n, rA, rB) ,KA (1n, rA, rB)) ≈c (TranscriptΠ (1n, rA, rB) ,K)

Where rA, rB ← {0, 1}∗ , K ← Kn are sampled independently and uniformly.

In order to create such a protocol, it is important to first remember the definition of computational indistin-
guishability. Two probability distributions are computationally indistinguishable if no efficient algorithm can tell them
apart:

6

Definition 13.3 (Computationally indistinguishable). Two probability ensembles X = {Xn}n∈N , Y = {Yn}n∈N are
computationally indistinguishable if for all PPT distinguishers D there exists a negligible function v (·) such that

|Pr [D (1n, x) = 1]− Pr [D (1n, y)− 1]| ≤ v (n)

Where x← Xn, y ← Yn

13.1 Diffie-Hellman
Let G be a PPT algorithm that on input 1n, outputs (G, q, g), where G is a cyclic group of order q, that is generated
by g, and q is an nbit prime. Let us assume that (G, q, g)← G (1n) is generated, and known to both parties (a publicly
published one in the world).

Sample: x ← Zq

Output: hA = gx

Alice
Sample: y ← Zq

Output: hB = gy

Bob
hA = gx

hB = gy

Shared key: KA = (hB)
x = gxy Shared key: KB = (hA)

y = gxy

KA = (hB)
x
= (gy)

x
= (gx)

y
= (hA)

y
= KB

So, Alice samples x← Zq, and then computes hA = gx, which she sends to Bob. Similarly, Bob samples y ← Zq,
computes hB = gy, which he sends to Alice. Alice then outputs KA = (hB)

x, and Bob outputs KB = (hA)
y.

Definition 13.4 (The Decisional Diffie Hellman (DDH) Assumption). For every PPT algoirithm A there exists a
negligible function v (·) such that

|Pr [A (G, q, g, gx, gy, gxz) = 1]− Pr [A (G, q, g, gx, gy, gz) = 1]| ≤ v (n)

Where (G, q, g)← G (1n), and x, y, z ← Zq

Effectively, they made an assumption that it is secure, and it has still not been broken. If you break it, you will
get the Turing prize. Sadly, unlike Computability and Complexity, no guarantees of 100% in the course.
Definition 13.5 (Computational Diffie-Hellman Assumption). For every PPT algorithm A, there exists a negligible
function v (·) such that

|Pr [A (G, q, g, gx, gy) = gxy]| ≤ v (n)

Where (G, q, g)← G (1n), and x, y ← Zq

If you can solve CDH, then you can also solve DDH, so therefore DDH is a more secure assumption.

14 Public Key Encryption
Definition 14.1 (IND-CPA). Π has indistinguishable encryptions under a chosen-plaintext attack if for every PPT
adversary A there exists a negligible function v (·) such that

Pr
[
INDCPA

Π,A (n) = 1
]
≤ 1

2
+ v (n)

A

(sk, pk)← KeyGen (1n)pk

m0,m1

b← {0, 1}

c∗ ← Enck (mb)
c∗

b′

INDCPA
Π,A (n) =

{
1, if b′ = b

0, otherwise

We will note that this is CPA, despite not having the oracle access, because A may function as its own oracle, since
access to the public key means that A may encrypt any message that it wants.

7

15 Digital Signatures
Definition 15.1. Π is existentially unforgeable against an adaptive chosen message attack if for every PPT
adversary A, there exists a negligible function v (·) such that

Pr
[
SigForgeΠ,A (n) = 1

]
≤ v (n)

Where the SigForge game is:

ASignsk(·)

(sk, vk)← Gen(1n)
vk

m

Signsk (m)

(m∗, t∗)

Let Q = the set of all queries asked by A (8)

SigForgeΠ,A (n) =

{
1, if Vrfyvk (m

∗, σ∗) = 1 ∧m∗ /∈ Q
0, otherwise

(9)

16 Interactive Proofs
Definition 16.1 (Interactive proof system). An interactive proof system for a language L is a protocol 〈P,V〉
where V is computable in probabilistic polynomial time, and the following holds:

• Completeness: For every x ∈ L:
Pr

rP ,rV
[outV [〈P,V〉 (x)] = Accept] = 1

• Soundness: For every x /∈ L, and for every computationally unbounded P∗:

Pr
rP ,rV

[outV [〈P∗,V〉 (x)] = Accept] ≤ 1

2

We will state that IP is the class of all languages with an interactive proof system. IP contains NP, and in fact,
IP = PSPACE. We can reduce the soundness error from 1

2 to ε with log
(
1
ε

)
independent repetitions.

Behold, an example of an interactive proof:

Definition 16.2 (Isomorphic). Two graphs G0 = (V0, E0), and G1 = (V1, E1) are isomorphic if there exists a one
to one mapping π : V0 → V1 such that (u, v) ∈ E0 ⇔ (π (u) , π (v)) ∈ E1 for every e, v ∈ V0

We can define the set of isomorphic graphs GI = {(G0, G1) : G0 is isomorphic to G1} ∈ NP . Similarly, we can
define the other class of graphs that are not isomorphic: GNI = {(G0, G1) : G0 is not isomorphic to G1} ∈ NP .
This class is not known to be in NP.

Find z ∈ {0, 1} such that
H is isomorphic to Gz

Prover
Sample a random permu-
tation π and b ← {0, 1}.

Accept if and
only if z = b

Verifier

Common input (G0, G1)

H = π (Gb)

z

Proof method

8

17 Zero Knowledge Proofs
An interactive proof system is zero-knowledge if whatever can be efficiently computed after interacting with P on
input x ∈ L can also be computed given only x. This should be true even when P is interacting with a malicious
verifier.

Again, this is most easily demonstrated with an example. Let us return to Graph Isomorphism, and show that we
can prove the input graphs G0, G1 are isomorphic without revealing the isomorphism.

Given: π such that
π (G0) = G1

Sample a random
permutation σ

Prover
b ← {0, 1}

Accept if and only
if γ (Gb) = H

Verifier

Common input (G0, G1)

H = σ (G0)

Show me that H is isomorphic to Gb

γ =

{
σ, if b = 0

σ ◦ π−1, if b = 1

Proof method

Consider at the same time that we have the following graphs, allowing us to demonstrate the isomorphism π
between G0 and G1, without ever revealing it:

G0 G1

H Ht

π

π−1

σ σ−1 σ σ−1

π

π−1

18 Commitments
An example bit commitment scheme:
Given a PRG G : |G (s)| = 3 · |s|, and a hard-core predicate h : {0, 1}∗ → {0, 1}, the sender is given v ∈ {0, 1} as input.

Input: v ∈ {0, 1}
Sample x ← {0, 1}n

S
Store commitment

On reveal, accept v iff:
f(x) matches

and h(x) ⊕ v matches

R

Public parameters: OWF f , hard-core predicate h

Commit phase
commit =

(
f(x), h(x)⊕ v

)

Reveal phase
Reveal: (v, x)

Bit-commitment scheme (OWF-based)
As we can see, in the commitment (very very informal), f (x) is functioning as a signature to verify the value of x,

and h (x)⊕ v is function as a signature to verify the value of v.
This can be extended to coin flips over the telephone (for example), by having Alice commit to her result, Bob respond
with his result, and Alice then reveal her result. This way, neither Alice, nor Bob can change their results according
to what the other said.

9

19 ZKP for G3C with Commitments

Private input: coloring ψ
Choose random per-
mutation π ∈ S3

Define φ = π ◦ ψ

Commit to φ(v) for all v ∈ V

Prover
Choose random

edge (u, v) ∈ E

Accept iff:
openings are valid

φ(u), φ(v) ∈ {1, 2, 3}
φ(u) 6= φ(v)

Verifier

Common input: graph G = (V,E)

Commit phase
Commitments {comv}v∈V

for φ(v)

Challenge phase
Challenge edge (u, v) ∈ E

Reveal phase
Open (φ(u), ru) and (φ(v), rv)

One round of the G3C zero-knowledge protocol

20 Cryptography Primitives
RSA

Assumption

TDP

DDH
Assumption

CDH
Assumption

Factoring
Assumption

DL
Assumption

CPA-Secure
PKE

Key
Agreement

CRHF

OWF
PRG

PRF / PRP
MAC

Signatures

Commitments

CPA / CCA-Secure
Symmetric-Key

Encryption

Zero Knowledge Proofs for NP

10

	Perfect secrecy
	Indistinguishable encryption
	PRGs
	Semantic security
	One way functions
	Computational Indistinguishability
	Hybrid argument
	Chosen Plaintext Attack (CPA)
	Pseudorandom Functions
	MACs
	CRHF
	CCA
	Key Agreement
	Diffie-Hellman

	Public Key Encryption
	Digital Signatures
	Interactive Proofs
	Zero Knowledge Proofs
	Commitments
	ZKP for G3C with Commitments
	Cryptography Primitives

