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1 Perfect secrecy

Definition 1.1 (Perfect secrecy). A symmetric key encryption scheme Il = (KeyGen, Enc, Dec) is perfectly secret
if for every distribution over M, and for every m € M, and for every ¢ € C it holds that

Pr[M =m|C =] = Pr[M =m]

That is, the probability that some plaintext is the plaintext given the ciphertext, is the same as the probability
that some plaintext is the plaintext, with no priors whatsoever.

2 Indistinguishable encryption

Definition 2.1 (Indistinguishable encryption). II has indistinguishable encryptions if for every PPT adversary
A there exists a negligible function v (-) such that
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where the probability is taken over the random coins used by A, and by the experiment.
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3 PRGs

Definition 3.1 (PRG). Let G : {0,1}" — {0,1}l(") be a polynomial-time computable function, and let 1(-) be a
polynomial such that for any input s € {0,1}", we have G (s) € {0, l}l("). Then, G is a pseudorandom generator
if the following two conditions hold:

e Ezxpansion: 1 (n) >n

o Pseudorandomness: For every PPT “distinguisher” D, there exists a negligible function v (-) such that

D(G(s)) =1] - [D(r)=1]| <v(n)

Pr Pr
s<{0,1}" r«{0,1}1(™

So, the probability that the distinguisher may tell the difference between the output of the PRG, and truly random
noise, is less than the output of the negligible function for that length of input.


https://github.com/robomarvin1501/notes_intro_to_crypto

4 Semantic security

Definition 4.1 (Semantically secure). II is semantically secure if for every adversary A there exists a PPT
“simulator” S such that for every efficiently sampleable plaintext distribution M = {M,} and all polynomial-time
computable functions f and h, there exists a negligible function v () such that

neN?

[Pr[A1", Ency (m), h(m)) = f(m)] = Pr[S (1", h(m)) = f(m)]] <v(n)
where k < KeyGen (1) and m < M,

Or in other words, whatever you can learn from the encryption, can also be efficiently learnt without the encryption,
or most simply, the ciphertext teaches us nothing. II is semantically secure if and only if it has indistinguishable
encryption.

5 One way functions

Definition 5.1. A polynomial-time computable function f : {0,1}* — {0,1}" is one way if for any PPT A, and
negligible function v (+)
Pr [A(1"y) e f ' (y)] <v(y)

y<f(Un)

Easy to compute, hard to invert.

6 Computational Indistinguishability

Definition 6.1 (Computationally indistinguishable). Two probability distributions X = {X,},cy and Y = {Y,}, y
are computationally indistinguishable if for every PPT distinguisher D there exists a negligible function v () such
that

Pr [D(1"2) =1~ Pr [D(1"y)=1]| <v(n)

4 Xn yY,

This is denoted X ~¢Y

7 Hybrid argument

This is a complicated technique, so we shall present an example.

Theorem 1. Let G : {0,1}" — {0,1}*" be a PRG, then H (s, s2) = G (s1) ||G (s2) is a PRG.

Proof . Our paradigm for this kind of proof is reduction via a hybrid argument.
Reduction: Given a distinguisher D, for H, construct a distinguisher A for G.
Hybrid argument: Let us suppose that between G (s1),G (s2) D has advantage €. Let us create a new PRG, that
given s1, Sg, ignores sq, and returns G (s1),7r2. So, between G (s1),G (s2) and G (s1), 72, it holds that D has at least

€
the advantage oL or between G (s1),r2 and 71,72 it holds that D has the advantage of at least %
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So:

PD (r1]lr2) = 1]]
P[D (G (1) [lr2) = 1] + [P[D (G (s1) [Ir2) = 1] = P[D (r1[[r2) = 1]|

e < [P[D(G(s1) |G (s2)) = 1]
< [P[D (G (s1) |G (s2)) = 1]

Let us define A, which on input z € {0,1}*" with sample s1 < {0,1}" and output D (G (s1) ||z). In this case, we
have created an adversary that distinguishes between the first 2 cases based off the difference of G (s2) and r,. We
may similarly create a second adversary that performs the same, and outputs D (Z]r2). Since one of these transitions
must be distinguishable with an advantage of at least £, we have found an adversary A for G, which is a contradiction
to the given that G is a PRG. O



8 Chosen Plaintext Attack (CPA)

We can modify Indistinguishable Encryption such that .4 may request any number of encryptions (From an oracle),
before it hands over the two messages between which it must distinguish:

Definition 8.1 (IND-CPA). II has indistinguishable encryptions under a chosen-plaintext attack if for every PPT
adversary A there exists a negligible function v (-) such that

1
Pr [INDgff (n)=1| < B +v(n)

This is to say, that the probability of winning the CPA game (described below) is 50%, plus negligible.
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9 Pseudorandom Functions

Definition 9.1 (PRF). An efficiently computable keyed function
F:{0,1}" x {0,1}" — {0,1}'"

is pseudorandom if for every PPT distinguisher D there exists a negligible function v () such that

Pr [DFW (1") = 1} _Pr {Dh(') (1") = 1” <v(n)

where k < {0,1}" and h < Func,_,,
The methodology for using PRFs is as follows:
1. Prove security assuming a truly random function is used

2. Prove that if an adversary can break the scheme when PRF is used, then it can be used to distinguish the PRF
from a truly random function

We may consider Enc to be, for example something that returns (r, O (r) @ my), and thus try and show if this is
a CPA secure scheme or not. For example, for the theorem If F' is a PRF, then Ilg is CPA-Secure. For the truly
random function h, I} is secure, so we may show that II; is indistinguishable from I, by contradiction that finds
that Il is not a PRF.
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10 MACs

Definition 10.1 (MAC scheme). A MAC (Message Authentication Code) scheme Il = (Gen, Mac, Vrfy) is secure if
for every PPT adversary A, there exists a negligible function v (-) such that

Pr[MacForgemn 4 (n) =1] < v (n)

This is to say, it is very hard for a PPT adversary to create a new message, with a correct MAC.

k < KeyGen(1™)
m
( Macy, (m)
(m*,t*)
Let Q = the set of all queries asked by A (3)

1, if Vrfy, (m*,t* ) =1Am* ¢ Q

MacForgeH_’A (n) = {0 otherwise

Note that this does not prevent replay attacks!

11 CRHF

Definition 11.1 (Collision Resistant). ® is collision resistant if for every PPT adversary A there exists a negligible
function v () such that
Pr[HashCollg 4 (n) =1] <wv(n)

We may describe HashColl as follows:

s < Gen (1™)

A

1, ifHs(zx)=Hs@@)Nz#a2

HashColls 4 (n) = {0 otherwise



12 CCA

Definition 12.1 (CCA-IND). II has indistinguishable encryptions under a chosen-ciphertext attack if for every PPT
adversary A there exists a negligible function v (-) such that

Pr [INDgg‘A (n)=1] <= +v(n)

In this case, we may also say that II is CCA-secure.

Note that CCA implies authenticity, since given Ency, (m), it is hard to generate Ency (m’) for a “related” m’ (such
asm' =m+1).
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13 Key Agreement

Definition 13.1 (Correctness). II is a key agreement protocol if there exists a negligible function v (n) such that
foralln e N
Pr [Ka(1",ra,m8) # Kg (1", ra,r5)] <v(n)
TA,TB
This is to say, that K; generates a different key given the same inputs with an exceedingly low probability.

The important thing to note here is that Eve is eavesdropping the communication channel, and should not learn
any information on the resulting key. Specifically, from Eve’s point of view, the key should be “as good as” an
independently chosen key.

Definition 13.2 (Security). A key agreement protocol I is secure if
(Transcripty (1", 74,78) , Ka (1", 74,78)) =¢ (Transcripty (1", r4,7rB) , K)
Where ra,rp + {0,1}", K < K,, are sampled independently and uniformly.

In order to create such a protocol, it is important to first remember the definition of computational indistin-
guishability. Two probability distributions are computationally indistinguishable if no efficient algorithm can tell them
apart:



Definition 13.3 (Computationally indistinguishable). Two probability ensembles X = { Xy}, cn,Y = {Ya},en are
computationally indistinguishable if for all PPT distinguishers D there exists a negligible function v (-) such that

[Pr[D (1", 2) = 1] = Pr[D (1", ) = 1]| < v (n)
Where z <+ X,,, y+ Y,

13.1 Diflie-Hellman

Let G be a PPT algorithm that on input 1", outputs (@G, ¢, g), where G is a cyclic group of order ¢, that is generated
by g, and ¢ is an nbit prime. Let us assume that (G, g, g) + G (1™) is generated, and known to both parties (a publicly
published one in the world).

Alice Bob
ha=g*
Sample: z < Z, > Sample: y < Z,
Output: hy = ¢° |« hs = 9" Output: hp = ¢¥
Shared key: K4 = (hg)" = g™ Shared key: Kp = (ha)” = g™

Ka=(hp)" =(9")" = (9")" = (ha)’ = Kp
So, Alice samples x < Z4, and then computes hy = g%, which she sends to Bob. Similarly, Bob samples y < Z,,
computes hp = g, which he sends to Alice. Alice then outputs K4 = (hg)”, and Bob outputs K = (ha)".
Definition 13.4 (The Decisional Diffie Hellman (DDH) Assumption). For every PPT algoirithm A there exists a
negligible function v (-) such that
PrA(G,q,9,9%,9",97) = 1] = Pr[A(G,q,9,9%,9%,97) = 1]| < v (n)
Where (G, q,g) < G (1™), and x,y, z < Z,

Effectively, they made an assumption that it is secure, and it has still not been broken. If you break it, you will
get the Turing prize. Sadly, unlike Computability and Complexity, no guarantees of 100% in the course.

Definition 13.5 (Computational Diffie-Hellman Assumption). For every PPT algorithm A, there exists a negligible

function v () such that
Pr[A(G.q,9,9% 9") = g™]| < v (n)

Where (G, q,g9) < G (1™), and z,y < Z,
If you can solve CDH, then you can also solve DDH, so therefore DDH is a more secure assumption.

14 Public Key Encryption

Definition 14.1 (IND-CPA). II has indistinguishable encryptions under a chosen-plaintext attack if for every PPT
adversary A there exists a negligible function v (-) such that
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We will note that this is CPA, despite not having the oracle access, because A may function as its own oracle, since
access to the public key means that 4 may encrypt any message that it wants.



15 Digital Signatures
Definition 15.1. II is existentially unforgeable against an adaptive chosen message attack if for every PPT

adversary A, there exists a negligible function v (-) such that

Pr [SigForger 4 (n) = 1] <wv(n)

Where the SigForge game is:
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Let Q = the set of all queries asked by A

. 1; lfVI'fyv (m*70-*):1/\m* ¢ Q
SigForger 4 (n) = {0 otherwi];e "

16 Interactive Proofs
Definition 16.1 (Interactive proof system). An interactive proof system for a language L is a protocol (P,V)

where V is computable in probabilistic polynomial time, and the following holds:

o Completeness: For every x € L:
Pr [outy [(P,V) (z)] = Accept] =1

rP,Tv

o Soundness: For every x ¢ L, and for every computationally unbounded P*:

N =

Pr [outy [(P*,V) (x)] = Accept] <

TP,TV

We will state that IP is the class of all languages with an interactive proof system. IP contains NP, and in fact,
IP = PSPACE. We can reduce the soundness error from % to € with log (é) independent repetitions.
Behold, an example of an interactive proof:

Definition 16.2 (Isomorphic). Two graphs Go = (Vo, Ep), and G1 = (V1, E1) are isomorphic if there exists a one
to one mapping 7 : Vo — V1 such that (u,v) € Ey < (7 (u),m (v)) € Ey for every e,v € Vp

We can define the set of isomorphic graphs GI = {(Gg, G1) : Gy is isomorphic to G1} € NP. Similarly, we can
define the other class of graphs that are not isomorphic: GNI = {(Go,G1) : Go is not isomorphic to G1} € NP.

This class is not known to be in NP.

Common input (Go, G1)

Verifier

Sample a random permu-
tation 7 and b < {0, 1}.

Prover

A

Find z € {0, 1} such that

H is isomorphic to G, z Accept if and

onlyif 2 = b

Y

Proof method



17 Zero Knowledge Proofs
An interactive proof system is zero-knowledge if whatever can be efficiently computed after interacting with P on
input € L can also be computed given only x. This should be true even when P is interacting with a malicious

verifier.
Again, this is most easily demonstrated with an example. Let us return to Graph Isomorphism, and show that we

can prove the input graphs G, Gy are isomorphic without revealing the isomorphism.

Common input (Go, G1)

Prover / \ Verifier
H =0 (Go) b o« {0,1)
Given: 7 such that
T (GO) = Show me that H is isomorphic to Gy
Sample a random
permutation o v=17 ifb=0 Accept if and only
com™t, ifb=1 ify(Gy) = H
Proof method

Consider at the same time that we have the following graphs, allowing us to demonstrate the isomorphism 7

between Gy and G, without ever revealing it:

18 Commitments

An example bit commitment scheme:
Given a PRG G : |G (s)| = 3-|s|, and a hard-core predicate h : {0,1}* — {0, 1}, the sender is given v € {0, 1} as input.

Public parameters: OWF f, hard-core predicate h

S R

Commit phase
commit = (f(x), h(z) & v) Store commitment

Input: v € {0,1}
Sample z « {0,1}"

Reveal phase On reveal, accept v iff:

Reveal: (v,x) f(z) matches
and h(z) & v matches

Bit-commitment scheme (OWF-based)
As we can see, in the commitment (very wvery informal), f (x) is functioning as a signature to verify the value of z,
and h (z) @ v is function as a signature to verify the value of v.

This can be extended to coin flips over the telephone (for example), by having Alice commit to her result, Bob respond
with his result, and Alice then reveal her result. This way, neither Alice, nor Bob can change their results according

to what the other said.



19 ZKP for G3C with Commitments

Common input: graph G = (V, E)

Prover Verifier

Commit phase

Commitments {com, },cv Choose random

Private input: coloring 9 for ¢(v) edge (u,v) € FE
Choose random per-
mutation 7 € Ss Accept iff:
Challenge phase P :
Define ¢ = mo ¢ Challenge edge (u,v) € E openings are valid
Commit to ¢(v) for all v € V ¢(u), ¢(v) € {1,2,3}
o(u) # ¢(v)

Reveal phase
Open (¢(U),TU) and ((;5(11),7’1,)

One round of the G3C zero-knowledge protocol

20 Cryptography Primitives
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