Lecture 7 - Public key encryption

Gidon Rosalki
2025-12-17

Notice: If you find any mistakes, please open an issue at https://github. com/robomarvini1501/notes_intro_to_crypto

1 Public key encryption
1.1 Definitions

Public key encryption involves the following syntax: There are three algorithms II = (KeyGen, Enc, Dec):
o The key generation algorithm KeyGen (1™) outputs a secret key sk, and a public key pk
e Encryption algorithm Enc takes a public key pk and a plaintext m, and outputs a ciphertext ¢
e Decryption algorithm Dec takes a secret key sk and a ciphertext ¢, and outputs a plaintext m

It is correct if for every m € M
Pr[Decs (Encyr, (m)) =m] =1

Definition 1.1 (IND-CPA). II has indistinguishable encryptions under a chosen-plaintext attack if for every PPT
adversary A there exists a negligible function v (-) such that

1
Pr [INDFOA (n) = 1] < 5t

So here the game is subtly different. Recall that the game is that A receives the encryption algorithm, produces
two plaintexts, receive the encryption of one of them, and has to guess which one. Now, instead of the encryption
algorithm, it receives the public key. There is no need to provide an encryption oracle, since A can encrypt by itself
using the public key. However, one must use a randomised encryption, to avoid A just encrypting mg, my by itself.
In comparison, for CCA A can also access a decryption oracle (aside from for ¢*).

1.2 Encrypting long messages

So we need to encrypt long messages. This can be done by encrypting them in blocks:

Enc, (m(l)) ..mp(”)) = (Encpk (m(l)) o Encyn (mp(n)))

Theorem 1. IfII = (KeyGen, Enc, Dec) is CPA secure, then for any polynomial p (n) the schemeIl! = (KeyGen, Enc’, Dec')
is CPA secure

Proof Idea. Given an adversary A’ for II', construct an adversary A for II. A gets one challenge ciphertext, and
generates the others on its own.

A' has
advantage €/2
here*

Encpy (mgl)) Encpy (méz))

Suppose A’

So A can generate the messages (m
1 ()

provide (mo , My

OR
A' has

advantage €/2

here*

(1)
0

Encyy (mgl))

Encyy (m§2>)

Encyy (mgl))

Encyp (mgz))

has advantage
€

* May need to consider A" & 1 — A’ depending
on the “direction” of the advantage

Figure 1: Hybrid argument

i

), and (mgl)

it is then able to differentiate between the messages.

(2)

7m1

), and mix the two halves. It can then (for example)

€
) and (mél), mgQ)), with an advantage of at least —. Since it can differentiate between the halves,

O

https://github.com/robomarvin1501/notes_intro_to_crypto

Now, public key schemes are somewhat inefficient, and slow to compute, but symmetric (private key) schemes are
much faster. The solution is called Hybrid encryption, where one generates a session key k, encrypts it (since it is
short) with a public key encryption scheme, and then encrypt m with a private key scheme, using k as the key.

2 Hybrid encryption

Definition 2.1 (Hybrid encryption). Let IT = (KeyGen, Enc, Dec) be a public key encryption scheme, and let (E, D)
be a symmetric key encryption scheme. We can now define a public key encryption scheme Il' = (Gen', Enc’, Dec')
where

o Gen' = Gen
s Enc, (m) samples k < {0,1}", computes c1 < Encyy, (k), and cz < Ey (m). It outputs ¢ — (c1,c2)
o Ded, (c1,¢): Compute k < Decsy, (¢1), and output Dy, (c2)

Theorem 2. IfII is CPA-secure, and (E, D) is IND-secure, then II' is CPA secure

Proof . Let there be A’ for IT'. It receives pk, outputs mg, m1, receives Encyy (k) , Ex (my), and outputs b'. From this
we may construct an adversary A for II, or an adversary B for (E, D). Taking the two messages that A’ outputs,
mg, m}, then we may consider the following:

1. (Encpk

ISNCEN
—~ o~
SRS
S 3
T~
EEE S
—~ o~
ja)
3
~
&
=
—
S
~— ~—
~

- (Encpr (k) , Ey, (m}))

From 1 - 4 A’ let us say that A’ has the advantage €. As a result, there are 2 stages where it has an advantage of at
least % We can now build A, that simulates A’. Upon receiving my, m}, we will output

mo = k

my = 0"

and receive in return the public key encryption of one of them ¢* = Encpi, (mp). We can then then return (¢*, Ej (my))
to A’, which will output the correct b’ with its advantage, since it can differentiate between Encyy (k) and Encyy (0™).
Conversely, if we set

mo = momy = m) (1)

Then we can give A’ the input (Encyi (07), ¢*), where ¢* = Ej, (my), and since it has the advantage for Ej, (my) and
Ey (m)), we will once again get back the correct '.
Finally, we can also have A output

mo = 0"

my = k
Receiving back ¢* = Encpy, (my), give (¢*, Ey, (m})) to A’, and thanks to the advantage that A’s has between Encpy, (0™)
and Encyy (k), it will return the correct b'. O
2.1 El-Gamal Encryption

Behold a real public key encryption scheme. It is based on Diffie-Hellman key agreement, and relies on the DDH
assumption. Recall the DDH assumption: Let G be a PPT algorithm that on input 1", outputs (G, g, g), where G is
a cyclic group of order ¢, that is generated by g, and ¢ is an nbit prime.

Definition 2.2 (The Decisional Diffie Hellman (DDH) Assumption). For every PPT algoirithm A there exists a
negligible function v (-) such that

[Pr[A(G,q,9,9",9%,9") = 1] = Pr[A(G,q,9,9%,9",97) = 1]| < v (n)
Where (G, q,9) < G (17), and z,y, z < Z,

So: Let G be a PPT algorithm that on input 1™ outputs (G, q,g), where G is a cyclic group of order ¢, that is
generated by g. We will define a public key encryption scheme IT = (KeyGen, Enc, Dec) as

o Gen' (1™): Sample (G, q,g) < G (1™), and = + Z,. Let h = ¢*, and output pk = (G, ¢, g,h), and sk ==z

o Encpr (m): Sample y < Z,, and output ¢ = (g%, hY - m)

c
e Decgy (c1,¢2): Output m = —i
51

Note that there are methods for encoding binary strings as group elements, and that for simplicity, we assume that
the plaintext set is G.

hY.m 2 m
DeCsk (EnCpk (m)) = Decsk (gy7]’Ly . m) = (gy) or — (g(g)y)f =m

Theorem 3 (Security). Under the DDH assumption, the scheme II is secure

Proof . Hey look! Another reduction. We will assume that there exists A that breaks I, and so we can build D that
breaks DDH. So, D receives (g%, g¥, g*), and needs to return if z = xy, or if z is random.

Let us construct D, that receives (G, q,9,91,92,93). It will give A pk = (G, ¢,9,91). A will return mg, m;, and
then D will return to A the ciphertext ¢* = (g2, g5 - myp).

Case I:
(9:91,92:93) = (9.9%.9". ")
Here, A’s view is identical to the CPA experiment, and therefore
Pr[D(G,q,9,9",9",9"") = 1] = Pr [INDG"* (n) = 1]

Case II: Let z be a random number, of appropriate size:

(9,91,92,93) = (9,9%,9%,97)

The view of A is independent of the bit b, and so
Pr [D (Ga Qa979x79y,gz) = 1] = 5

So, given (G,q,9,91,92,93), our algorithm D will generate pk = (G, q,g,91), and upon A response of mg, m1,
it will return ¢* = (g2, g3 - mp). It will take A’s output ', and output 1 if ¥’ = b, and 0 otherwise. By the DDH
assumption:

v(n) > [Pr[D(G,q,9,9%,9%,9"") =1] = Pr[D(G,q.9,9",9",97) = 1]|
1

= [Pr[INDG5* (n) =1] - 5

2.2 RSA encryption
2.2.1 The RSA assumption

Let GenRSA be a PPT algorithm that on input 1" outputs (N, e, d), where p, g are n bit primes, N = pq, ged (e, (N)) =
1,and d = e" mod ¢ (N). Here ¢ (N) is the order of our set Z3_,,, such that ¢ (N) = (p — 1) (¢ — 1).

Definition 2.3 (RSA Assumption). For every PPT A there exists a negligible function v (-) such that
Pr[A(N,e,z¢ mod N)=z] <wv(n)
Where (N, e,d) < GenRSA (1™) and x < Z;.

In short, given z¢ mod N, it is very hard to compute z. In other words, f.(z) = ¢

permutation family. fy is the inverse of f., since ed =1 mod ¢ (N)

mod N is a one way

2.2.2 Textbook RSA encryption

Let GenRSA be a PPT algorithm that on input 1" outputs (N, e, d), where p, g are n bit primes, N = pq, ged (e, ¢ (N)) =
1,and d = e~ mod ¢ (N).
From here we create the public key pk = (N, e), and the private key sk = d. Thus:

Encyr (m) =m® mod N (2)
Decg, (¢) = ¢ mod N (3)
This is... Not a great system to be honest. It was first suggested in 1977, but the security definitions, like CPA-security

were created in 1982. We may firstly note that Enc is deterministic, which is immediately bad. We will note that it
is also not CPA-secure, many attacks are known. For example, if m¢ < N, then ¢ = [m® mod N] = m¢, and so ct =m.

We may take this moment to state NEVER USE TEXTBOOK RSA!!!
To emphasise this point I have used atrocious grammar. I hope this helps you remember this.
(There is in fact an argument, which I will link here, that RSA should never be used. It is not a part of the course,
and I have added it purely for your own interest.)

https://blog.trailofbits.com/2019/07/08/fuck-rsa/

2.2.3 PKCS
Version 1.5 was standard issued by RSA labs in 1993. The idea is random padding:

pk = (N,e) (4)
sk=d (5)

So, Encyr (m) = (r||lm)® mod N, for a freshly chosen random r. This has the drawbacks that no proof of CPA security
exists (aside from if m is very short). Chosen plaintext attacks are known if r is too short, and chosen ciphertext
attacks are also known. In short, we do not know if it is secure, nor do we even have a neat little assumption (like
DDH) that ¢f it holds, we know it to be secure.

Next is version 2.0, which uses a more structured padding: Optimal Asymmetric Encryption Padding (OAEP).
OAEP introduces redundancy, so that not every ¢ € Z7 is a valid ciphertext. This means that Decgy (-) must check
for proper formatting upon decryption, and reject if it does not exist. This can be proved to be CCA-secure under
the RSA assumption, if G and H are modelled as “random” hash functions. It is widely used in practice.

m|[0...0 r

!
@(—G<

T

(s t)e mod N

Figure 2:

Note that the RSA permutation family is not a CPA-secure PKE scheme. It is however a family of trapdoor
permutations, which are one way permutations that may be efficiently inverted using a trapdoor. We will show a
generic construction of a CPA secure scheme from any TDP (trapdoor permutation) family:

Definition 2.4 (Trapdoor permutation family). A tuple (Gen, Samp, f, ffl) of PPT algorithms is a trapdoor per-
mutation family if:

o Gen (1™) outputs pairs (I,td) defining a domain Dy
o (Genq, Samp, f) is a one way permutation family, where Geny is obtained from Gen by outputting only I
o f71 is deterministic, and for all (I,td) and x € Dy it holds that f,;' (f1(z)) =z

For simplicity, we will typically write x <— Dy instead of z <— Samp;, and (Gen, 1, f’l) instead of (Gen, Samp, f, f’l).
To summarise our cryptographic primitives once more:

RSA Factoring

Assumption Assumption OWF
l PRG
TDP \
CPA-Secure Key
—> —>
DDH _— PKE Agreement PRF\PRP
Assumption MAC
CiH DL CPA\CCA-Secure
. . CRHF —> Symmetric-Key
Assumption Assumption Encryption

Figure 3: Cryptographic primitives

3 Constructions

	Public key encryption
	Definitions
	Encrypting long messages

	Hybrid encryption
	El-Gamal Encryption
	RSA encryption
	The RSA assumption
	Textbook RSA encryption
	PKCS

	Constructions

