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1 Digital signatures
Alice and Bob wish to communicate, but Eve completely controls the channel. We would like to assure the receiver
of a message that it has not been modified. We will discuss the public key counterpart of message authentication
codes. The signer holds a secret signing key, and the verifier knows the corresponding public verification key. This
means that anyone can verify the signature, but only one person can create it. This is the inverse of encryption, where
everyone knows the public encryption key, but only 1 person knows the private decryption key.

This has the syntax Π = (Gen, Sign,Vrfy):

• The key generation algorithm Gen on input 1n outputs a signing key sk, and a verification key vk

• Sign takes a signing key sk, and a message m, and outputs a signature σ

• Vrfy takes a verification key vk, a message m, and a signature σ, and outputs a bit b

Correctness: For every message m
Pr [Vrfyvk (m,Signsk (m)) = 1] = 1

To compare against MACs:

Signatures MACs
n users require only n secret
keys

n users require n2 secret

Same signature can be verified
by all users
Publicly verifiable and transfer-
able

Privately verifiable and non
transferable

Provides non repudiation More efficient (2 - 3 orders of
magnitude faster)

Table 1:

1.1 Security of Signatures
A knows vk, and can adaptively ask for signatures of messages of its choice. It then tries to forge a signature on a
new message.

Figure 1: Signature game

We finish with Q, the set of all queries asked by A, and

SigForgeΠ,A (n) =

{
1, if Vrfyvk (m

∗, σ∗) = 1 ∧m∗ /∈ Q

0, else

Definition 1.1. Π is existentially unforgeable against an adaptive chosen message attack if for every PPT
adversary A, there exists a negligible function v (·) such that

Pr
[
SigForgeΠ,A (n) = 1

]
≤ v (n)
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2 Constructions
One time signatures are used to construct stateful signatures, which may then be used to construct stateless signatures.

2.1 One time signatures
We will demonstrate Lamport’s One time scheme:

• sk = (x0, x1)

• vk = (f (x0) , f (x1)), where f is a one way function

• Signsk (b) = xb

• Vrfy receives the message, and the signature, and checks it against the relevant side of the verification key

This way A needs to compute x1−b, which is equivalent to computing the inverse of f .
More formally: Let f be an OWF. we will define a signature scheme Π = (Gen,Sign,Vrfy) for 1 bit messages as

follows:

• Gen (1n): Sample x0, x1 ← {0, 1}n, and compute y0 = f (x0), and y1 = f (x1), output sk = (x0, x1) and
vk = (y0, y1)

• Signsk (b): Output σ = xb

• Vrfyvk (b, σ): If f (σ) = yb output 1, otherwise output 0

Theorem 1. If f is an OWF, then Π is a secure one time signature scheme for 1 bit messages

Proof . The concept is that A forges a signature on b∗ =⇒ A, inverts yb∗ = f (xb∗). Inverting f (xb∗) is clearly hard,
even when given x1−b∗ and f (x1−b∗). An inverter can guess the forged bit b∗ ahead of time with probability 1
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.

We can construct an inverter B as follows, which takes as input y = f (x) for some x← {0, 1}n.

1. Choose b∗ ← {0, 1} and set yb∗ = y

2. Sample x1−b∗ ← {0, 1}n, and set y1−b∗ = f (x1−b∗)

3. Run A on input vk = (y0, y1)

4. When A requests a signature on b:

• If b = b∗ abort
• If b = 1− b∗ output x1−b∗

5. If A output a forgery σ∗ on b∗, output σ∗

So

Pr
[
B (f (x)) ∈ f−1 (f (x))

]
≥ Pr

[
SigForgeΠ,A (n) = 1 ∧ B does not abort

]
= Pr

[
SigForgeΠ,A (n) = 1

]
· Pr [B does not abort]

Pr
[
SigForgeΠ,A (n) = 1

]
· 1
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We may note that this scheme only works one time, for a single bit. We may extend this to l bit messages by creating

sk =

[
x1
0 x2

0 . . . xl
0

x1
1 x2

1 . . . xl
1

]
(1)

vf =

[
f
(
x0
0

)
. . . f

(
xl
0

)
f
(
x0
1

)
. . . f

(
xl
1

)] (2)

Or formally: Let f be an OWF. We define the signature scheme Π = (Gen,Sign,Vrfy) for l bit messages as follows:

• Gen (1n): For each i ∈ [l], and b ∈ {0, 1}, sample xi,b ← {0, 1}n and compute yi,b = f (xi,b). Output sk =
{(xi,0, xi,1)}i∈[l] and vk = {(yi,0, yi,1)}i∈[l]

• Signsk (m = m1 . . .ml): Outputs σ = (x1,m1
, . . . , xl,ml

)

• Vrfyvk (m = m1 . . .ml, σ = (x1, . . . , xl)): If ∀i ∈ [l] f (xi) = yi,mi output 1, else 0

Theorem 2. If f is an OWF, then Π is a secure, one time signature scheme for l bit messages

Proof Idea. Suppose that A asks for a signature on m, and then forges on m∗ 6= m. The inverter B needs to guess
i ∈ [l] such that m∗

i 6= mi as well as guess the bit m∗
i .
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2.1.1 Summary

Lamport theorised in 1979 that if OWFs exist, then for any polynomial l = l (n) there is a one time signature scheme
for signing l bit messages. The following theorem is known as the Hash and Sign paradigm:
Theorem 3. If CRHFs exist, then there is a one time signature scheme that can sign messages of arbitrary polynomial
length.

2.2 Stateful signatures
We are now extending the game, such that A may request the signature of many different messages.
The signer updates the signing key after each signature.

• The initial state sk1 is produced by Gen : (vk, sk1)← Gen (1n)

• Signing the ith message updates ski to ski+1 : (σ, ski+1)← Signski
(mi)

• Verification requires only vk

For existential unforgeability against an adaptive chosen message attacks
• A knows vk, and can adaptively ask for signatures of its choice

• The signing oracle maintains the internal state ski

• A tries to forge a signature on a new message
Let us create a stateful scheme. Let Π = (Gen,Sign,Vrfy) be a one time signature scheme for signing “sufficiently

long” messages. for m = m1 . . .mn ∈ {0, 1}n, we let m |i
def
= m1 . . .mi (and m |0

def
= ε).

We will define Π′ =
(
Gen′,Sign′,Vrfy′) for signing n bit messages as follows:

• The signer’s state is a binary tree with 2n leaves

• Each node w ∈ {0, q}<n has a left child w0, and a right child w1

• The tree is of exponential size, but is never fully constructed
Key generation: Each node w ∈ {0, 1}≤n is associated with (vkw, skw) ← Gen (1n). Keys are generated, and stored
only when needed. The state sk′i consists of all keys and signatures that were generated so far. vk′ = vkε and
sk′1 = skε. Note that vkε is the root node, with children vk0, vk1.

To sign a message m ∈ {0, 1}n:
1. Generate a path from the root, to the leaf labelled m: For each proper prefix w of m sample

(vkw0, skw0) , (vkw1, skw1)← Gen (1n)

2. Certify the path: For each proper prefix w of m, compute σw = Signskw
(vkw0, vkw1)

3. Compute σm = Signskm
(m)

4. Store all generated keys as part of the updated state

5. Output the signature
({

σm|i , vkm|i0
}n−1

i=1
, σm

)
Simple example: The message m = 111 receives the signature Signsk111 (111) ,Signsk11 (vk111) ,Signsk1 (vk11) ,Signskε (vk1).

This simple example is missing the fact that if we now want to sign 110, we need to resign 11, which is a problem from
the attack scheme. To fix this, each parent provides the signature for both its children at once, and we thus avoid this
issue.
Theorem 4. If Π is a one time signature scheme, then Π′ is existentially unforgeable against chosen message attacks

Proof Idea. Each skw is used to sign exactly one “message”. If w is an internal node, then skw is used to sign
(vkw0, vkw1), and if w is a leaf then skw is used to sign w.

Proof Idea #2. Suppose that A asks to forge a signature
({

σ∗
m∗|i , vk

∗
m∗|i0, vk

∗
m∗|i1

}n−1

i=0
, σ∗

m∗

)
on m∗. There are two

possible cases:
1. The full path to the leaf m∗ already existed, and A used the same path. This implies that A must have forged

a signature that is a relative of vkm∗ , and did not receive any signature that is a relative of vkm∗

2. The full path to leaf m∗ did not exist, or A used a different path. This implies that A must have forged a
signature that is a relative of vkm∗|i for i ∈ {0, . . . , n− 1}, and received exactly one signature that is a relative
of vkm∗|i

This has the problem of needing to remember all the sks, since once we have signed a message, we cannot use skε
any more, which is necessary to sign another message. We can now move on to stateless signatures, and thus remove
this need for state.
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2.3 Stateless signatures
Instead of remembering ski at every stage, we use PRFs to create them on the fly. The signer’s secret key sk is a seed
for a PRF Fsk (·). (rw, r

′
w)

def
= Fsk (w) is used as the randomness needed for each node w ∈ {0, 1}≤n:

• If w ∈ {0, 1}<n then rw is used for sampling (vkw, skw) and r′w is used for signing (vkw0, vkw1)

• If w ∈ {0, 1}n, then rw is used for sampling (vkw, skw), and r′w is used for signing w

Theorem 5. If Π is a one time signature scheme, and F is a PRF, then Π′′ is existentially unforgeable against chosen
message attacks

Proof Idea. Any adversary A against Π′′ can be used either as an adversary against the stateful scheme Π′, or as a
distinguisher against the PRF F

Pr
[
SigForgeΠ′′,A (n) = 1

]
≤

∣∣Pr [SigForgeΠ′′,A (n) = 1
]
− Pr

[
SigForgeΠ′,A (n) = 1

]∣∣+ Pr
[
SigForgeΠ′,A (n) = 1

]
=

∣∣∣Pr [DFsk(·) (1n) = 1
]
− Pr

[
Df(·) (1n) = 1

]∣∣∣+ Pr
[
SigForgeΠ′,A (n) = 1

]

3 Certificates and public key infrastructure
Public key cryptography is great, but we need to distribute the public keys somehow. Keys must be authenticated in
order to avoid man in the middle attacks. This is done by making use of Certificate Authorities:

• A certificate is a signature binding an identity to a public key

• We assume that we already trust the CA’s verification key vkCA (by hard wiring it into the browser source code
or some such)

• The CA provides Alice with certCA→A
def
= SignskCA

(Alice’s key is pkA)

• Alice then sends to Bob both pkA, and certCA→A

So for example, we can have a root, that has signed all of HUJI, www.gov.il, and CNN. HUJI then signs on CS,
and Chem, and CS can sign on Alice, and Bob. This way, everyone only signs a small number of relevant keys, and I
can use this chain of trust to trust someone else’s key, because I trust the root node.
Certificates should not be valid indefinitely, since an employee may leave or get fired, and secret keys can get stolen.
One solution is to add an expiration date, such that the signature is not valid after that date, another approach is
to add a revocation list that the authority publishes, and when I received a signed key, I check it against the CA’s
revoked list.

4 User-server identification
We need a way to identify users to websites, like when you log in to moodle. A trivial method would be for the user to
hold a password p, the server to know y = f (p) for some function f , and the user identifies themselves by sending p.
This is obviously terrible. It can however be slightly improved by using a signature scheme. The user has the signing
key sk, and the server knows the verification key vk. The user identifies themselves by signing a message that the
server has randomly generated for them.
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