Lecture 9

Gidon Rosalki
2026-01-14

Notice: If you find any mistakes, please open an issue at https://github. com/robomarvinl1501/notes_intro_to_crypto

1 Introduction

Zero knowledge proofs are proofs that reveal nothing beyond the validity of the assertion being proved. This seems
to be a contradicting definition, but we will see that it is not. They were introduced by Goldwasser, Micali, and
Rackoff in 1985, and are a central tool in cryptographic protocols. We are not going to pass over the entire powerpoint
presentation, this is simply going to be an introductory lecture.
Consider for example proving that I have 1000NIS in my pocket. I could prove by taking it out and counting it, but
I could potentially want to prove it without showing you what types of notes I have.
A less contrived example would be finding a mathematical proof, which also has monetary value. I do not want to
publish this proof, since then I no longer have the monetary value of the secret (suppose it is an algorithm, which you
do not want everyone else to be able to implement). So, zero knowledge proofs can be helpful here, to show that I
have proven the theorem, but not distribute the solution to everybody.

This is often thought of as an interactive process (it does not have to be, but it can be easier to think of it as such,
and so we will begin by doing so).
A classic example is proving that you have solved a sudoku, without demonstrating the result. This is classic, and
there are papers that demonstrate it, that are supposedly very readable, and easy to understand.

Sudoku is a slightly contrived example, since it is very clearly in P, consider instead the 3 colour problem. Can
Alice prove that the graph is 3 colourable without revealing the 3 colouring? Well, hopefully we will discuss that later.
Furthermore, given n = pq, we can show that Alice knows how to factor n, without revealing p or q.

2 Interactive proofs

We will begin by defining classic NP problems. NP is the class of

Definition 2.1 (NP). All languages L, equipped with an efficiently computable relation Ry such that
x €L e Jw: (r,w) € Ry Al|w| = poly(|x])

So, given a statement x € L, and proof w, NP proofs are inherently non-ZK, since Bob gains the ability to prove
x € L to others.
Let us extend this with two new ideas:

« Interaction: Replace a static proof with an interactive protocol
e Randomisation: Allow the verifier to toss coins, and err with a small probability

We will create the prover P, which has the random tape rp, and the verifier V, with the random tape ry. We will
define the notation:

o (P,V) () is the distribution of the transcript of the protocol
o outy [(P,V) ()] is the distribution of V’s output

Definition 2.2 (Interactive proof system). An interactive proof system for a language L is a protocol (P, V) where
V is computable in probabilistic polynomial time, and the following holds:
o Completeness: For every x € L:
Pr [outy [(P,V) (x)] = Accept] =1

TP,TV

o Soundness: For every x ¢ L, and for every computationally unbounded P*:

Pr [outy [(P*,V) (z)] = Accept] <

TP,V

N |

https://github.com/robomarvin1501/notes_intro_to_crypto

We will state that IP is the class of all languages with an interactive proof system. IP contains NP, and in fact,
1 1
IP = PSPACE. We can reduce the soundness error from 5 to € with log () independent repetitions.
€
Definition 2.3 (Isomorphic). Two graphs Gy = (Vi, Ey), and G1 = (V1, E1) are isomorphic if there exists a one to
one mapping m : Vo — V1 such that (u,v) € Ey < (7 (u), 7 (v)) € Ey for every e,v €

That is to say, two graphs are isomorphic if we can rename the nodes in order to transform one into the other.
We will note that this problem is in NP, since we can trivially build a verifier, but beyond this, we know nothing. We
know not if it is NP-hard, NP-complete, or in P.

We can define the set of isomorphic graphs GI = {(Go, G1) : G is isomorphic to G1} € NP. Similarly, we can define
the other class of graphs that are not isomorphic: GNI = {(Gy, G1) : Gy is not isomorphic to G1} € NP. This class
is not known to be in NP.

We can now ask the question as to how to prove to an efficient verifier that Gg, G1 are not isomorphic. we will posit
that GNI € IP: Given the common input (Gg, G1), the prover, and the verifier, the verifier will try and find the points
where (if) the prover is guessing.

Intuitive solution: The verifier will create two new graphs, which are permutations on the originals, 7 (Gg) , 7 (G1).
The verifier will also create 7 (Gp) : b < {0,1}. If the graphs are isomorphic, then all the graphs, including the new
ones, are also isomorphic. If they are not, then 7 (Gp) is not isomorphic to 7 (G1), and 7 (Gp) will be isomorphic to
one of them.

Formal: The verifier will create H = 7 (Gy) for a random permutation 7, and b <— {0,1}. H is then sent to the
prover. The prover will then find z € {0,1}, such that H is isomorphic to G, and will then respond with z. The
verifier will accept if and only if z = b.

Theorem 1. This protocol is an interactive proof for GNI

Proof . Firstly, we will claim completeness. If (Gy, G1) € GNI, then the verifier always accepts, since no graph can be
isomorphic to both Gy, and G;.

1
Next, soundness, if (Go, G1) ¢ GNI, then for every P* the verifier accepts with probability 3 This is true since P*’s

1
view is independent of b, so therefore for any z € {0,1} that P* will output, we have Pry_(o1} [z = b] = 5 O

3 Zero knowledge proofs

An interactive proof system is zero-knowledge if whatever can be efficiently computed after interacting with P on
input x € L can also be computed given only x. This should be true even when P is interacting with a malicious
verifier.

Let us return to the isomorphic classes. Can we prove that Gy and G; are isomorphic without revealing the
isomorphism? A solution needs to enable completeness, soundness, and zero knowledge (ZK). Hear me and rejoice,
for we are able so to do. Gird thy loins, and behold the following solution:

Intuition: Two graphs are isomorphic if there exists a permutation that transforms from one to the other (7). There
therefore also exists 7—!, which transforms in the opposite direction. Let us consider another permutation ¢, which
transforms Gg to H. Should Gy and G be isomorphic, then there also exists o’ which transforms from G; to H. We
can send the transformed graph H = o (Gy) to the prover, and it will respond with the permutation that transforms
G1 to H. This is ZK, since it teaches us nothing on the permutations m, 7~!, but demonstrates that the prover can
find these permutations.

Formal: The prover will sample a random permutation o, and send H = o (Gg) to the verifier. The verifier then
responds with a request that the prover show that H is isomorphic to Gy, for b <— {0,1}. The prover will then respond

with

{07 if b=0

V= 1
com—+, ifb=1

Which provides the required transformation to H for Gy,. The verifier then accepts if and only if v (Gp) = H.
Correctness: If the two graphs are isomorphic, then the verifier will trivially receive what it requested.
ZK: We need to show that the prover did not leak information. Since the only leak that can happen is o o 7!, but
since we have further transformed 7—! with o, it acts sort of like a one time pad, and so it does not leak 7.
Soundness: The two graphs are not isomorphic, so the prover sends some graph, it can be a transformation of G,
or G1, or perhaps some other graph Gs, and in every case, the prover will make a mistake with probability of %, as

required.
4 Zero knowledge proofs for NP
Theorem 2. Assuming that OWFs exist, then any L € NP has a zero knowledge interactive proof. Furthermore, the

prover’s strategy can be implemented in probabilistic polynomial time, provided an NP witness for membership of the
ocmmon input.

Steps. 1. Construct a ZK proof for some NP complete language. Use G3C (graph 3 colouring), and the tool
commitments schemes (which are based on OWFs)

2. Given any NP language L, a common input x, and a witness w, we reduce them to G3C, and then use the above

ZK proof.
Since we showed reductions in computability, and complexity, we will focus on step one, and commitments schemes
O

4.1 Tool: Commitment schemes

These are the basic ingredient in many cryptographic protocols. They are a digital analogue of locked boxes. The
sender S has a value v, and a random tape rg. The sender sends the commit phase to the receiver, and receives a
protocol (S, R) in response. It sends (v,rg) in the reveal phase, and the receiver R accepts v if and only if (v,rg)
are consistent with the commit phase. Commitment schemes have the following security requirements:

o Hiding: At the end of the commit stage, the receiver has no knowledge of v
o Binding: The sender cannot find two valid openings (v,rs) and (v/,ry) for v # v’

Definition 4.1 (Hiding). A commitment scheme (S, R) is computationally hiding if for every PPT receiver R*
and for every two values v # v’ it holds that

viewg- [{S (1), ") (1")] ~° viewg. [(S (v/) , R*) (1)

Perfect (statistical) hiding is when viewg~ [(S (v), R*) (1™)] and viewg~ [(S (v'), R*) (1™)] are identical (statistically
indistinguishable) for any unbounded R*

Definition 4.2 (Binding). A commitment scheme (S, R) is computationally binding if for every PPT sender S*
there exists a negligible function v (n) such that

Pr(((v,r,v',7r"), com) < (S*,R) (1") : v # v’ A (v,7) is consistent with com A (v',r") is consistent with com)

where
com & viewg [(S*,R) (1™)]

4.1.1 Some applications of commitments

Consider if you are playing some board game over the phone, which involves throwing dice. Your opponent tells you
that they threw 6. Commitments can be used to to ensure that this is the truth. Let us simplify this somewhat into
coin flipping, neither party wants to speak first. Alice may send a commitment of what she tossed, Bob then responds
with his toss. Alice then sends the reveal for her toss, which Bob can then verify, so this way, Alice could not change
her result, and Bob can believe it.

Let us return to ZK proofs for NP.

Definition 4.3. A graph G = (V, E) is 8 colourable if there exists a mapping ¢ : V- — {1,2,3} such that ¢ (u) # ¢ (v)
for every (u,v) € E.

We want to prove that G is 3 colourable, without revealing a 3 colouring. The high level idea is to break that G is
3-colourable into polynomially many pieces. Each piece does not reveal any information, but combining all the pieces
yields a proof that G is 3-colourable. We can implement this using commitments.

Solution: Given the common input G = (V, E), and an auxiliary input to the prover, which is a 3 colouring
1V — {1,2,3}. The protocol is as follows:

e P uniformly chooses a permutation 7 over {1,2,3}, and lets ¢ “f o P

e P commits to the value ¢ (w) for every w € V using a statistically binding commitment

e V uniformly chooses an edge (u,v) € E, and sends it to P

o P revelas the openings of ¢ (u), and ¢ (v)

o V accepts if and only if the openings are valid, i.e. ¢ (u), o (v) € {1,2,3} A (u) # ¢ (v)

This protocol is repeated ¢ - |E| times for soundness e *.

Since we have shown ZK proofs for G3C, and there exist reductions for every language in NP, we can thus show a
ZK proof for every language in NP.

	Introduction
	Interactive proofs
	Zero knowledge proofs
	Zero knowledge proofs for NP
	Tool: Commitment schemes
	Some applications of commitments

