

Exam 2025A

Gidon Rosalki

2026-01-07

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvin1501/notes_intro_to_crypto

1 Question 1

Let there be a family of collision resistant functions $H_s : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$. Let there also be a PRG $G : \{0, 1\}^{n+1} \rightarrow \{0, 1\}^{2n}$.

1.1 Part A

Consider

$$F_s(x_1 \| x_2) = H_s(H_s(x_1) \| H_s(x_2))$$

Where $|x_1|, |x_2| = 2n$, and $F_s : \{0, 1\}^{4n} \rightarrow \{0, 1\}^n$. Is the family F_s collision resistant?

Sol. Yes. Let us assume towards contradiction that F_s is not collision resistant, so there exists an adversary \mathcal{A} that finds collisions in F_s . Let us create $\mathcal{B}(s)$, which runs $\mathcal{A}(s)$, which returns $(x_1, x_2), (x'_1, x'_2)$. Since $(x_1, x_2) \neq (x'_1, x'_2)$ then at least one of the pair of variables $x_i, x'_i : i \in \{1, 2\}$ are different, so let us assume wlog that $x_1 \neq x'_1$. If so, then there are 2 cases:

1. $H_s(x_1) = H_s(x'_1)$ in which case we are done, and return (x_1, x'_1)
2. $H_s(x_1) \neq H_s(x'_1)$ in which case we return $(H_s(x_1) \| H_s(x_2) \| H_s(x'_1) \| H_s(x'_2))$

1.2 Part B

Consider

$$L_s(x) = H_s(G(x))$$

Where

$$L_s : \{0, 1\}^{n+1} \rightarrow \{0, 1\}^n$$

Is the family L_s collision resistant?

Sol. No. We will bring a counterexample of (H'_s, G') such that L_s is not collision resistant.

$$H'_s = H_s \tag{1}$$

$$G'(x) = \begin{cases} G(x), & \text{if } x \notin \{0^n, 1^n\} \\ 0, & \text{if } x \in \{0^n, 1^n\} \end{cases} \tag{2}$$

Theorem 1 (Claim 1). G' is a PRG

Proof. We will assume towards contradiction that there exists an adversary \mathcal{A} that can differentiate between the output of G' and random, and from that build the adversary \mathcal{B} that can differentiate between the output of G and random. It will be exactly the same adversary, and will have the same probability as G for differentiating between G and random, with the addition of $\frac{2}{2^n}$. Since finding this collision in G is in fact negligible, and the addition of $\frac{2}{2^n}$ is also negligible, then the finding of this collision is also in fact negligible. \square

Theorem 2 (Claim 2). $L_s(x) = H_s(G'(x))$ is not a CRH

Proof. Pretty trivial, since we know the definition of G' , and may simply give L_s the two inputs such that G returns the same output, and we have found a non trivial collision in L_s . \square

2 Question 2

Let $f : \{0,1\}^n \rightarrow \{0,1\}^n$ be a one way function. We will use this to create a new signature scheme $\Pi = (\text{Gen}, \text{Sign}, \text{Vrfy})$:

- $\text{Gen}(1^n) = x_1, \dots, x_n \leftarrow \{0,1\}^n$, $sk = (x_1, \dots, x_n)$, $vk = (y_1, \dots, y_n) = (f(x_1), \dots, f(x_n))$
- $\text{Sign}(sk, m)$: $\sigma = \perp$ (as in, empty string). For $1 \leq i \leq n$, if $m[j] = 1$, then $\sigma \parallel x_i$, then return σ
- $\text{Vrfy}(vk, m)$: Passes over every bit in the message, and knows that the corresponding part of the message must be the preimage of a part of the vk , so it computes the function of it, and checks if it appears in the verification key

2.1 Part A

Show that the system is not secure as a one time signature.

Sol. It's trivial. The empty message 0^n will have the signature \perp , without even calling the oracle.

2.2 Part B

Correct the signature scheme such that it is now secure, and that the size of vk is $n^2 + n(\log(n) + 1)$ bits.

Sol. We will note that in the unaltered scheme, an adversary can change an arbitrary 1 in the message to a 0, by simply removing the relevant part of the signature. We can resolve this by signing the number of 0s in the message, which requires $\log(n) + 1$ bits, and thus the adversary cannot change the numbers of 0s, since he would also have to change the signature of the number of 0s:

- $\text{KeyGen}(1^n)$: $sk = (x_1, \dots, x_n, x_{n+1}^0, \dots, x_{n+\log n+1}^0, x_{n+1}^1, \dots, x_{n+\log n+1}^1)$
 $vk = (f(x_1), \dots, f(x_n), f(x_{n+1}^0), \dots, f(x_{n+\log n+1}^0), f(x_{n+1}^1), \dots, f(x_{n+\log n+1}^1))$
- $\text{Sign}(sk, m)$: $\text{Sign}(m) \parallel \text{Lamport}(\text{zeroes}(m))$

This solves it in $n^2 + 2n(\log(n) + 1)$.

To prove it, let us assume towards contradiction that there exists adversary \mathcal{A} that can win the game against this scheme. So, \mathcal{A} outputs m , and receives in return from the oracle $\text{Sign}(m)$, $\text{Lamport}(\text{zeroes}(m))$, and then at the end outputs m^* , $\text{sign}(m^*)$, $\text{Lamport}(\text{zeroes}(m^*))$. There are now two cases:

1. $\text{Zeroes}(m^*) = \text{Zeroes}(m)$: Then this message must be a permutation of another, since there are the same number of 0s. In this case, then we may break it similarly to how we did Lamport.
2. $\text{Zeroes}(m^*) \neq \text{Zeroes}(m)$: In this case, then we have succeeded, since we have created a new message with the same signature.

In order to remove the 2, then we may simply change KeyGen to remove the doubling of the bits from $x_{n+1}, \dots, x_{n+\log n+1}$, and Sign to be $\text{Sign}(m \parallel \text{zeroes}(m))$. This may be proven with the exact same proof.

3 Question 3

3.1 Part A

Given a cyclic group (G, g, q) such that DDH holds $((g^x, g^y, g^{xy}) \approx (g^x, g^y, g^z))$, let there be two distributions:

$$(g^{a_1}, g^{a_2}, g^{a_1 b}, g^{a_2 b}) \tag{3}$$

$$(g^{a_1}, g^{a_2}, g^{r_1}, g^{r_2}) \tag{4}$$

Such that $a_1, a_2, r_1, r_2, b \leftarrow \mathbb{Z}_q$. Show that these distributions are indistinguishable.

Sol. Let us assume towards contradiction that they are distinguishable. So, we are building $\mathcal{A}(g^x, g^y, T)$ where $g \leftarrow \{g^{xy}, g^z\}$ that succeeds against DDH. We will do this by building $\mathcal{B}(g^x, g^{a_2}, T, (g^y)^{a_2})$. When T is random, then \mathcal{B} has received lower option, and when T is g^{xy} , then \mathcal{B} has received the top option. We have thus built an adversary that may win DDH.

3.2 Part B

We will define a key exchange protocol. In order for Alice and Bob to swap keys, Alice chooses $k, r \leftarrow \{0,1\}^n$, and sends Bob $s = k \oplus r$. Bob chooses $t \leftarrow \{0,1\}^n$, and sends $u = s \oplus t$. Alice sends Bob $w = u \oplus r$. Alice outputs k , and Bob outputs $w \oplus t$. Show that the protocol is correct, and whether or not it is secure.

Sol. Correctness:

$$\begin{aligned} w \oplus t &= u \oplus r \oplus t \\ &= s \oplus t \oplus r \oplus t \\ &= k \oplus r \oplus t \oplus r \oplus t \\ &= k \end{aligned}$$

Security: Not secure, in the slightest. The adversary observes $s = k \oplus r$, and $u = s \oplus t$. From this, they may compute $s \oplus u = k \oplus r \oplus k \oplus r \oplus t = t$. From there, like B, they have t , and when w is transmitted, they may compute $w \oplus t = k$, and find the secret key.